電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>詳談機(jī)器學(xué)習(xí)模型算法的質(zhì)量保障方案

詳談機(jī)器學(xué)習(xí)模型算法的質(zhì)量保障方案

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

分享一些最常見最實(shí)用的機(jī)器學(xué)習(xí)算法

在這篇文章中,分享一些最常用的機(jī)器學(xué)習(xí)算法。
2017-10-14 14:24:008793

機(jī)器學(xué)習(xí)模型評(píng)估指標(biāo)

機(jī)器學(xué)習(xí)模型指標(biāo)在機(jī)器學(xué)習(xí)建模過程中,針對(duì)不同的問題,需采用不同的模型評(píng)估指標(biāo)。
2023-09-06 12:51:50410

如何使用TensorFlow構(gòu)建機(jī)器學(xué)習(xí)模型

在這篇文章中,我將逐步講解如何使用 TensorFlow 創(chuàng)建一個(gè)簡(jiǎn)單的機(jī)器學(xué)習(xí)模型
2024-01-08 09:25:34272

25個(gè)機(jī)器學(xué)習(xí)面試題,你都會(huì)嗎?

算法涉及到一些對(duì)矩陣的操作,例如矩陣乘法和求逆矩陣。請(qǐng)給出一個(gè)簡(jiǎn)單的數(shù)學(xué)證明,說明為什么這種機(jī)器學(xué)習(xí)算法的 mini-batch 版本可能比在整個(gè)數(shù)據(jù)集上進(jìn)行訓(xùn)練的計(jì)算效率更高?(提示:矩陣乘法的時(shí)間
2018-09-29 09:39:54

機(jī)器學(xué)習(xí)模型之性能度量

機(jī)器學(xué)習(xí)模型的性能度量
2020-05-12 10:27:21

機(jī)器學(xué)習(xí)算法分享

機(jī)器學(xué)習(xí)算法(1)——Logistic Regression
2020-06-09 13:30:03

機(jī)器學(xué)習(xí)算法如何用于制造無人駕駛汽車?

機(jī)器學(xué)習(xí)算法如何用于制造無人駕駛汽車
2021-03-18 06:27:18

機(jī)器學(xué)習(xí)——期望最大算法

機(jī)器學(xué)習(xí) - 期望最大(EM)算法
2020-05-21 14:31:34

機(jī)器學(xué)習(xí)之 k-近鄰算法(k-NN)

機(jī)器學(xué)習(xí)機(jī)器學(xué)習(xí)100天(5) --- k-近鄰算法(k-NN)
2020-05-15 15:06:29

機(jī)器學(xué)習(xí)之偏差、方差,生成模型,判別模型,先驗(yàn)概率,后驗(yàn)概率

機(jī)器學(xué)習(xí):偏差、方差,生成模型,判別模型,先驗(yàn)概率,后驗(yàn)概率
2020-05-14 15:23:39

機(jī)器學(xué)習(xí)之高級(jí)算法課程學(xué)習(xí)總結(jié)

機(jī)器學(xué)習(xí):高級(jí)算法課程學(xué)習(xí)總結(jié)
2020-05-05 17:17:16

機(jī)器學(xué)習(xí)實(shí)戰(zhàn):GNN加速器的FPGA解決方案

的提升,對(duì)傳統(tǒng)的機(jī)器學(xué)習(xí)算法設(shè)計(jì)以及其實(shí)現(xiàn)技術(shù)帶來了嚴(yán)峻的挑戰(zhàn)。在此背景之下,諸多基于Graph的新型機(jī)器學(xué)習(xí)算法—GNN(圖神經(jīng)網(wǎng)絡(luò)),在學(xué)術(shù)界和產(chǎn)業(yè)界不斷的涌現(xiàn)出來。GNN對(duì)算力和存儲(chǔ)器的要求非常高
2020-10-20 09:48:39

機(jī)器學(xué)習(xí)算法應(yīng)用

關(guān)于機(jī)器學(xué)習(xí)的相關(guān)算法。正版資源,免費(fèi)看的。
2017-08-24 22:14:36

機(jī)器學(xué)習(xí)簡(jiǎn)介與經(jīng)典機(jī)器學(xué)習(xí)算法人才培養(yǎng)

上課時(shí)間安排:2022年05月27日 — 2022年05月30日No.1 第一天一、機(jī)器學(xué)習(xí)簡(jiǎn)介與經(jīng)典機(jī)器學(xué)習(xí)算法介紹什么是機(jī)器學(xué)習(xí)?機(jī)器學(xué)習(xí)框架與基本組成機(jī)器學(xué)習(xí)的訓(xùn)練步驟機(jī)器學(xué)習(xí)問題的分類
2022-04-28 18:56:07

機(jī)器算法學(xué)習(xí)比較

轉(zhuǎn)本文主要回顧下幾個(gè)常用算法的適應(yīng)場(chǎng)景及其優(yōu)缺點(diǎn)!機(jī)器學(xué)習(xí)算法太多了,分類、回歸、聚類、推薦、圖像識(shí)別領(lǐng)域等等,要想找到一個(gè)合適算法真的不容易,所以在實(shí)際應(yīng)用中,我們一般都是采用啟發(fā)式學(xué)習(xí)方式來實(shí)驗(yàn)
2016-09-27 10:48:01

Python機(jī)器學(xué)習(xí)經(jīng)典實(shí)例教程指南和附帶源碼

用最火的Python語言、通過各種各樣的機(jī)器學(xué)習(xí)算法來解決實(shí)際問題!資料中介紹的主要問題如下:- 探索分類分析算法并將其應(yīng)用于收入等級(jí)評(píng)估問題- 使用預(yù)測(cè)建模并將其應(yīng)用到實(shí)際問題中- 了解如何使用無
2019-08-28 15:06:22

【下載】《機(jī)器學(xué)習(xí)》+《機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》

、謀發(fā)展的決定性手段,這使得這一過去為分析師和數(shù)學(xué)家所專屬的研究領(lǐng)域越來越為人們所矚目。本書第一部分主要介紹機(jī)器學(xué)習(xí)基礎(chǔ),以及如何利用算法進(jìn)行分類,并逐步介紹了多種經(jīng)典的監(jiān)督學(xué)習(xí)算法,如k近鄰算法
2017-06-01 15:49:24

【阿里云大學(xué)免費(fèi)精品課】機(jī)器學(xué)習(xí)入門:概念原理及常用算法

摘要: 阿里云大學(xué)聯(lián)合螞蟻金服高級(jí)算法專家推出了免費(fèi)的機(jī)器學(xué)習(xí)入門課程:機(jī)器學(xué)習(xí)入門:概念原理及常用算法 (點(diǎn)擊開始學(xué)習(xí)) AlaphaGo與圍棋界的較量,吸引了全世界的目光,也讓大家見識(shí)到了機(jī)器
2017-06-23 13:51:15

互聯(lián)網(wǎng)數(shù)據(jù)化運(yùn)營(yíng)基礎(chǔ)應(yīng)用之信息質(zhì)量模型

的解決方案的。構(gòu)建信息質(zhì)量模型所涉及的主要還是常規(guī)的數(shù)據(jù)挖掘技術(shù),比如回歸算法、決策樹等。但是對(duì)于信息質(zhì)量模型的需求,由于其目標(biāo)變量具有一定的特殊性,因此它與目標(biāo)客戶預(yù)測(cè)(響應(yīng))模型在思路和方法上會(huì)有一些
2018-11-26 13:53:50

人工智能和機(jī)器學(xué)習(xí)的前世今生

學(xué)習(xí)算法評(píng)估一個(gè)用一種特殊的數(shù)據(jù)來泛化的預(yù)測(cè)模型。因此,必須有大量的實(shí)例,以供機(jī)器學(xué)習(xí)算法用來理解系統(tǒng)的行為?,F(xiàn)在,當(dāng)機(jī)器學(xué)習(xí)算法與新類型的數(shù)據(jù)一起出現(xiàn)時(shí),系統(tǒng)將能夠生成類似的預(yù)測(cè)。了解機(jī)器學(xué)習(xí)算法
2018-08-27 10:16:55

人工智能基本概念機(jī)器學(xué)習(xí)算法

目錄人工智能基本概念機(jī)器學(xué)習(xí)算法1. 決策樹2. KNN3. KMEANS4. SVM5. 線性回歸深度學(xué)習(xí)算法1. BP2. GANs3. CNN4. LSTM應(yīng)用人工智能基本概念數(shù)據(jù)集:訓(xùn)練集
2021-09-06 08:21:17

什么是機(jī)器學(xué)習(xí)? 機(jī)器學(xué)習(xí)基礎(chǔ)入門

另一方面,機(jī)器學(xué)習(xí)是向計(jì)算機(jī)提供一組輸入和輸出,并要求計(jì)算機(jī)識(shí)別“算法”(或用機(jī)器學(xué)習(xí)的說法稱為模型)的過程,這種算法每次都將這些輸入轉(zhuǎn)化為輸出。通常,這需要大量的輸入,以確保模型每次都能正確地識(shí)別正確
2022-06-21 11:06:37

使用 Python 開始機(jī)器學(xué)習(xí)

的運(yùn)行速度跟它的低層語言實(shí)現(xiàn)的運(yùn)行速度相比擬的。你沒有必要擔(dān)心程序的運(yùn)行速度。值得知道的Python程序庫Scikit-learn你剛開始學(xué)機(jī)器學(xué)習(xí)嗎?如果你需要一個(gè)涵蓋了特征工程,模型訓(xùn)練和模型測(cè)試所有
2018-12-11 18:37:19

分解式虛擬模型步態(tài)算法VMC介紹

軌跡控制機(jī)器人足端曲線使用貝賽爾曲線等軌跡設(shè)定,控制方法簡(jiǎn)單,但是很難適應(yīng)多變的地形。分解式虛擬模型步態(tài)算法VMC介紹VMC 控制方法是利用假想的虛擬彈簧構(gòu)件連接機(jī)器人內(nèi)部作用點(diǎn),或者連接作用點(diǎn)
2021-09-15 06:23:11

如何實(shí)現(xiàn)機(jī)器人的自我學(xué)習(xí)?

足夠小。因此概率上還是可以根據(jù)ν的值推斷μ的值的。如果將橙色彈珠看做機(jī)器學(xué)習(xí)算法的“分類錯(cuò)誤”,綠色彈珠看做機(jī)器學(xué)習(xí)算法的“分類正確”,罐子看做全部數(shù)據(jù),N看做訓(xùn)練數(shù)據(jù),則可以由Hoeffding
2016-03-04 10:34:38

常用python機(jī)器學(xué)習(xí)庫盤點(diǎn)

現(xiàn)在人工智能非?;鸨?,機(jī)器學(xué)習(xí)應(yīng)該算是人工智能里面的一個(gè)子領(lǐng)域,而其中有一塊是對(duì)文本進(jìn)行分析,對(duì)數(shù)據(jù)進(jìn)行深入的挖掘提取一些特征值,然后用一些算法學(xué)習(xí),訓(xùn)練,分析,甚至還能預(yù)測(cè),那么Python中常
2018-05-10 15:20:21

干貨 | 這些機(jī)器學(xué)習(xí)算法,你了解幾個(gè)?

,廣義線性模型,2,支持向量機(jī),3,最近鄰居法,4,決策樹,5,神經(jīng)網(wǎng)絡(luò),等等… 但是,從我們的經(jīng)驗(yàn)來看,這并不總是算法分組最為實(shí)用的方法。那是因?yàn)閷?duì)于應(yīng)用機(jī)器學(xué)習(xí),你通常不會(huì)想,“今天我要訓(xùn)練一個(gè)支持向量機(jī)
2019-09-22 08:30:00

有沒有搞機(jī)器學(xué)習(xí)算法研究的啊?

有沒有搞機(jī)器學(xué)習(xí)、人工智能相關(guān)的算法研究的???自己一個(gè)人搞感覺挺難的,希望找到志同道合的朋友,相互探討。
2016-02-26 09:56:00

經(jīng)典算法大全(51個(gè)C語言算法+單片機(jī)常用算法+機(jī)器學(xué)十大算法

試題學(xué)SPFA算法整體來說,機(jī)器學(xué)習(xí)算法可以分為 3 大類:0.1 監(jiān)督學(xué)習(xí) 工作原理:該算法由自變量(協(xié)變量、預(yù)測(cè)變量)和因變量(結(jié)果變量)組成,由一組自變量對(duì)因變量進(jìn)行預(yù)測(cè)。通過這些變量集合,我們
2018-10-23 14:31:12

部署基于嵌入的機(jī)器學(xué)習(xí)模型

1、如何在生產(chǎn)中部署基于嵌入的機(jī)器學(xué)習(xí)模型  由于最近大量的研究,機(jī)器學(xué)習(xí)模型的性能在過去幾年里有了顯著的提高。雖然這些改進(jìn)的模型開辟了新的可能性,但是它們只有在可以部署到生產(chǎn)應(yīng)用中時(shí)才開始提供真正
2022-11-02 15:09:52

阿里巴巴大數(shù)據(jù)產(chǎn)品最新特性介紹--機(jī)器學(xué)習(xí)PAI

兩種構(gòu)建業(yè)務(wù)解決方案的途徑,一個(gè)是通過自己使用機(jī)器學(xué)習(xí)PAI來開發(fā),其中包括實(shí)驗(yàn)的構(gòu)建、模型部署和應(yīng)用等步驟;二是選擇行業(yè)ISV,ISV通過在行業(yè)中的經(jīng)驗(yàn)為客戶構(gòu)建出不同的,可部署在實(shí)際業(yè)務(wù)中的模型
2019-09-18 14:57:22

高級(jí)機(jī)器學(xué)習(xí)算法工程師--【北京】

、視頻分析、3D圖形與視覺、SLAM、強(qiáng)化學(xué)習(xí)、自然語言理解、機(jī)器人技術(shù)、模型壓縮相關(guān)算法等;2. 提出和實(shí)現(xiàn)最前沿的算法,保持算法在工業(yè)界和學(xué)術(shù)界的領(lǐng)先;3. 推動(dòng)計(jì)算機(jī)視覺&機(jī)器學(xué)習(xí)算法在眾多
2017-12-07 14:34:41

基于Q-學(xué)習(xí)算法的異常檢測(cè)模型

    針對(duì)網(wǎng)絡(luò)入侵的不確定性導(dǎo)致異常檢測(cè)系統(tǒng)誤報(bào)率較高的不足,提出一種基于Q-學(xué)習(xí)算法的異常檢測(cè)模型(QLADM)。該模型把Q-學(xué)習(xí)、行為意圖跟蹤和入侵預(yù)測(cè)結(jié)合起
2009-09-02 11:58:387

一文解析機(jī)器學(xué)習(xí)常用35大算法

本文將帶你遍歷機(jī)器學(xué)習(xí)領(lǐng)域最受歡迎的算法。系統(tǒng)地了解這些算法有助于進(jìn)一步掌握機(jī)器學(xué)習(xí)。當(dāng)然,本文收錄的算法并不完全,分類的方式也不唯一。
2018-06-30 04:24:003645

機(jī)器學(xué)習(xí)經(jīng)典算法-最優(yōu)化方法

機(jī)器學(xué)習(xí)算法之最優(yōu)化方法
2017-09-04 10:05:100

BP神經(jīng)網(wǎng)絡(luò)模型學(xué)習(xí)算法

BP神經(jīng)網(wǎng)絡(luò)模型學(xué)習(xí)算法
2017-09-08 09:42:4810

Spark機(jī)器學(xué)習(xí)庫的各種機(jī)器學(xué)習(xí)算法

本文將簡(jiǎn)要介紹Spark機(jī)器學(xué)習(xí)庫(Spark MLlibs APIs)的各種機(jī)器學(xué)習(xí)算法,主要包括:統(tǒng)計(jì)算法、分類算法、聚類算法和協(xié)同過濾算法,以及各種算法的應(yīng)用。 你不是一個(gè)數(shù)據(jù)科學(xué)家。根據(jù)
2017-09-28 16:44:431

機(jī)器學(xué)習(xí)模型評(píng)估和優(yōu)化

監(jiān)督學(xué)習(xí)的主要任務(wù)就是用模型實(shí)現(xiàn)精準(zhǔn)的預(yù)測(cè)。我們希望自己的機(jī)器學(xué)習(xí)模型在新數(shù)據(jù)(未被標(biāo)注過的)上取得盡可能高的準(zhǔn)確率。換句話說,也就是我們希望用訓(xùn)練數(shù)據(jù)訓(xùn)練得到的模型能適用于待測(cè)試的新數(shù)據(jù)。正是這樣
2017-10-12 15:33:420

R語言機(jī)器學(xué)習(xí)算法的性能分析比較

你如何有效地計(jì)算出不同機(jī)器學(xué)習(xí)算法的估計(jì)準(zhǔn)確性?在這篇文章中,你將會(huì)學(xué)到8種技術(shù),用來比較R語言機(jī)器學(xué)習(xí)算法。你可以使用這些技術(shù)來選擇最精準(zhǔn)的模型,并能夠給出統(tǒng)計(jì)意義方面的評(píng)價(jià),以及相比其它算法
2017-10-12 16:33:391

基于BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)質(zhì)量監(jiān)測(cè)模型及仿真

基于更好地掌握學(xué)生自主學(xué)習(xí)質(zhì)量的目的,采用BP神經(jīng)網(wǎng)絡(luò)算法,以學(xué)生利用網(wǎng)絡(luò)答疑系統(tǒng)學(xué)習(xí)的內(nèi)容、過程、成效作為網(wǎng)絡(luò)學(xué)習(xí)質(zhì)量監(jiān)測(cè)模型的評(píng)價(jià)指標(biāo),建立了網(wǎng)絡(luò)學(xué)習(xí)質(zhì)量監(jiān)測(cè)模型,通過建立好的模型對(duì)學(xué)生網(wǎng)絡(luò)學(xué)習(xí)
2017-11-13 10:33:1611

機(jī)器學(xué)習(xí)算法分類

機(jī)器學(xué)習(xí)起源于人工智能,可以賦予計(jì)算機(jī)以傳統(tǒng)編程所無法實(shí)現(xiàn)的能力,比如飛行器的自動(dòng)駕駛、人臉識(shí)別、計(jì)算機(jī)視覺和數(shù)據(jù)挖掘等。機(jī)器學(xué)習(xí)算法很多。很多時(shí)候困惑人們的是,很多算法是一類算法,而有些算法又是
2018-01-05 17:36:103101

隨機(jī)塊模型學(xué)習(xí)算法

由于隨機(jī)塊模型能夠有效處理不具有先驗(yàn)知識(shí)的網(wǎng)絡(luò),對(duì)其研究成為了機(jī)器學(xué)習(xí)、網(wǎng)絡(luò)數(shù)據(jù)挖掘和社會(huì)網(wǎng)絡(luò)分析等領(lǐng)域的研究熱點(diǎn).如何設(shè)計(jì)出具有模型選擇能力的快速隨機(jī)塊模型學(xué)習(xí)算法,是目前隨機(jī)塊模型研究面臨
2018-01-09 18:20:041

談Kaggle機(jī)器學(xué)習(xí)模型融合

本文以Kaggle的Titanic入門比賽來講解stacking的應(yīng)用,來討論一下Kaggle機(jī)器學(xué)習(xí)模型融合。
2018-01-11 19:09:121006

人工智能之機(jī)器學(xué)習(xí)常見算法

機(jī)器學(xué)習(xí)無疑是當(dāng)前數(shù)據(jù)分析領(lǐng)域的一個(gè)熱點(diǎn)內(nèi)容。很多人在平時(shí)的工作中都或多或少會(huì)用到機(jī)器學(xué)習(xí)算法。這里小編為您總結(jié)一下常見的機(jī)器學(xué)習(xí)算法,以供您在工作和學(xué)習(xí)中參考。
2018-02-02 17:20:461552

機(jī)器學(xué)習(xí)新手最適合學(xué)習(xí)的10個(gè)算法

算法永遠(yuǎn)是一段代碼的靈魂,面對(duì)海量的機(jī)器學(xué)習(xí)算法,萌新最愛問的是,“我該選什么算法?”
2018-03-29 14:10:397887

機(jī)器學(xué)習(xí)有哪十大算法?機(jī)器學(xué)習(xí)的十大算法詳細(xì)資料概述免費(fèi)下載

整體來說,機(jī)器學(xué)習(xí)算法可以分為 3 大類 1監(jiān)督學(xué)習(xí) 工作原理:該算法由自變量(協(xié)變量、預(yù)測(cè)變量)和因變量(結(jié)果變量)組成,由一組自變量對(duì)因變量進(jìn)行預(yù)測(cè)。通過這些變量集合,我們生成一個(gè)將輸入映射到輸出的函數(shù)。訓(xùn)練過程達(dá)到我們?cè)O(shè)定的損失閾值停止訓(xùn)練,也就是使模型達(dá)到我們需要的準(zhǔn)確度等水平。
2018-09-10 17:38:0013

一種新穎的基于模型機(jī)器學(xué)習(xí)方式——model based machine learning

還有很多各式各樣的疑問充滿了機(jī)器學(xué)習(xí)的歷程和工程實(shí)踐中。但這本書為我們帶來了一個(gè)對(duì)機(jī)器視覺的全新視角:model-based 機(jī)器學(xué)習(xí)。基于模型機(jī)器學(xué)習(xí)將會(huì)給你不同的視角解答上面的問題,并將幫助你創(chuàng)造出更加有效的算法,當(dāng)然算法也更加透明。
2018-10-21 10:50:135773

Plethora IIOT機(jī)器學(xué)習(xí)算法和解決方案的介紹

Plethora IIOT機(jī)器學(xué)習(xí)算法和解決方案可同時(shí)處理數(shù)萬個(gè)傳感器數(shù)據(jù)點(diǎn),以產(chǎn)生智能實(shí)時(shí)反饋,如數(shù)控機(jī)床的預(yù)測(cè)性維護(hù)。
2018-11-26 06:29:002659

機(jī)器學(xué)習(xí)算法常用指標(biāo)匯總

機(jī)器學(xué)習(xí)性能評(píng)價(jià)標(biāo)準(zhǔn)是模型優(yōu)化的前提,在設(shè)計(jì)機(jī)器學(xué)習(xí)算法過程中,不同的問題需要用到不同的評(píng)價(jià)標(biāo)準(zhǔn),本文對(duì)機(jī)器學(xué)習(xí)算法常用指標(biāo)進(jìn)行了總結(jié)。
2019-02-13 15:09:193945

谷歌發(fā)布非政策強(qiáng)化學(xué)習(xí)算法OPC的最新研究機(jī)器學(xué)習(xí)即將開辟新篇章?

在谷歌最新的論文中,研究人員提出了“非政策強(qiáng)化學(xué)習(xí)算法OPC,它是強(qiáng)化學(xué)習(xí)的一種變體,它能夠評(píng)估哪種機(jī)器學(xué)習(xí)模型將產(chǎn)生最好的結(jié)果。數(shù)據(jù)顯示,OPC比基線機(jī)器學(xué)習(xí)算法有著顯著的提高,更加穩(wěn)健可靠。
2019-06-22 11:17:083374

機(jī)器學(xué)習(xí)處理器怎樣選擇合適的

雖然經(jīng)典機(jī)器學(xué)習(xí)算法需要人工干預(yù)來從數(shù)據(jù)中提取特征,但機(jī)器學(xué)習(xí)算法或網(wǎng)絡(luò)模型學(xué)習(xí)如何提取數(shù)據(jù)中的重要特征并對(duì)該數(shù)據(jù)進(jìn)行智能預(yù)測(cè)。
2019-09-11 11:52:152260

詳解機(jī)器學(xué)習(xí)分類算法KNN

本文主要介紹一個(gè)被廣泛使用的機(jī)器學(xué)習(xí)分類算法,K-nearest neighbors(KNN),中文叫K近鄰算法。
2019-10-31 17:18:145657

不同角度的機(jī)器學(xué)習(xí)算法比較

人類發(fā)明了無數(shù)的機(jī)器學(xué)習(xí)(ML)算法。 當(dāng)然,大多數(shù)時(shí)候,只有一小部分用于研究和工業(yè)。 但是,對(duì)于人類來說,理解并記住所有這些ML模型的所有細(xì)節(jié)都是有些不知所措的。 某些人可能還會(huì)誤以為所有這些算法都是完全無關(guān)的。 更重要的是,當(dāng)兩者看起來都是有效的算法時(shí),如何選擇使用算法A而不是算法B?
2020-05-03 18:35:001312

機(jī)器學(xué)習(xí)模型在生產(chǎn)中退化的原因

由于意外的機(jī)器學(xué)習(xí)模型退化導(dǎo)致了幾個(gè)機(jī)器學(xué)習(xí)項(xiàng)目的失敗,我想分享一下我在機(jī)器學(xué)習(xí)模型退化方面的經(jīng)驗(yàn)。實(shí)際上,有很多關(guān)于模型創(chuàng)建和開發(fā)階段的宣傳,而不是模型維護(hù)。
2020-05-04 12:11:001615

人人都能懂的機(jī)器學(xué)習(xí)算法原理教程免費(fèi)下載

算法公式挺費(fèi)神,機(jī)器學(xué)習(xí)太傷人。任何一個(gè)剛?cè)腴T機(jī)器學(xué)習(xí)的人都會(huì)被復(fù)雜的公式和晦澀難懂的術(shù)語嚇到。但其實(shí),如果有通俗易懂的圖解,理解機(jī)器學(xué)習(xí)的原理就會(huì)非常容易。本文整理了一篇博客文章的內(nèi)容,讀者可根據(jù)這些圖理解看似高深的機(jī)器學(xué)習(xí)算法。
2020-05-21 08:00:001

詳談機(jī)器學(xué)習(xí)的決策樹模型

決策樹模型是白盒模型的一種,其預(yù)測(cè)結(jié)果可以由人來解釋。我們把機(jī)器學(xué)習(xí)模型的這一特性稱為可解釋性,但并不是所有的機(jī)器學(xué)習(xí)模型都具有可解釋性。
2020-07-06 09:49:063073

理解機(jī)器學(xué)習(xí)中的算法模型

對(duì)于初學(xué)者來說,這很容易讓人混淆,因?yàn)椤?b class="flag-6" style="color: red">機(jī)器學(xué)習(xí)算法”經(jīng)常與“機(jī)器學(xué)習(xí)模型”交替使用。這兩個(gè)到底是一樣的東西呢,還是不一樣的東西?作為開發(fā)人員,你對(duì)排序算法、搜索算法等“算法”的直覺,將有助于你厘清這個(gè)困惑。在本文中,我將闡述機(jī)器學(xué)習(xí)算法”和“模型”之間的區(qū)別。
2020-07-31 15:38:083347

一文詳談機(jī)器學(xué)習(xí)的強(qiáng)化學(xué)習(xí)

強(qiáng)化學(xué)習(xí)屬于機(jī)器學(xué)習(xí)中的一個(gè)子集,它使代理能夠理解在特定環(huán)境中執(zhí)行特定操作的相應(yīng)結(jié)果。目前,相當(dāng)一部分機(jī)器人就在使用強(qiáng)化學(xué)習(xí)掌握種種新能力。
2020-11-06 15:33:491552

機(jī)器學(xué)習(xí)的范圍和算法

什么是機(jī)器學(xué)習(xí)機(jī)器學(xué)習(xí)是英文名稱MachineLearning(簡(jiǎn)稱ML)的直譯。機(jī)器學(xué)習(xí)涉及概率論、統(tǒng)計(jì)學(xué)、逼近論、凸分析、算法復(fù)雜度理論等多門學(xué)科。
2020-11-12 10:19:121203

如何才能正確的構(gòu)建機(jī)器學(xué)習(xí)模型

系統(tǒng)、超個(gè)性化活動(dòng)和目標(biāo)驅(qū)動(dòng)系統(tǒng)。每一個(gè)項(xiàng)目都有一個(gè)共同點(diǎn):它們都基于對(duì)業(yè)務(wù)問題的理解,并且數(shù)據(jù)和機(jī)器學(xué)習(xí)算法必須應(yīng)用于解決問題,從而構(gòu)建一個(gè)能夠滿足項(xiàng)目需求的機(jī)器學(xué)習(xí)模型。
2021-01-11 19:25:0014

機(jī)器學(xué)習(xí)的范圍/算法/分類

什么是機(jī)器學(xué)習(xí)機(jī)器學(xué)習(xí)是英文名稱MachineLearning(簡(jiǎn)稱ML)的直譯。機(jī)器學(xué)習(xí)涉及概率論、統(tǒng)計(jì)學(xué)、逼近論、凸分析、算法復(fù)雜度理論等多門學(xué)科。
2021-01-21 09:29:063315

最實(shí)用的的五種機(jī)器學(xué)習(xí)算法

最實(shí)用的機(jī)器學(xué)習(xí)算法Top5 demi 在 周一, 04/01/2019 - 10:35 提交 本文將推薦五種機(jī)器學(xué)習(xí)算法,你應(yīng)該考慮是否將它們投入應(yīng)用。這五種算法覆蓋最常用于聚類、分類、數(shù)值預(yù)測(cè)
2021-03-24 16:14:315987

基于深度學(xué)習(xí)的視頻質(zhì)量評(píng)價(jià)方法及模型研究

視頻質(zhì)量評(píng)價(jià)(VQA)是以人眼的主觀質(zhì)量評(píng)估結(jié)果為依據(jù),使用算法模型對(duì)失真視頻進(jìn)行評(píng)估。傳統(tǒng)的評(píng)估方法難以做到主觀評(píng)價(jià)結(jié)果與客觀評(píng)價(jià)結(jié)果相一致?;谏疃?b class="flag-6" style="color: red">學(xué)習(xí)的視頻質(zhì)量評(píng)價(jià)方法無需加入手工特征,通過
2021-03-29 15:46:4081

機(jī)器學(xué)習(xí)中的無模型強(qiáng)化學(xué)習(xí)算法及研究綜述

強(qiáng)化學(xué)習(xí)( Reinforcement learning,RL)作為機(jī)器學(xué)習(xí)領(lǐng)域中與監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)并列的第三種學(xué)習(xí)范式,通過與環(huán)境進(jìn)行交互來學(xué)習(xí),最終將累積收益最大化。常用的強(qiáng)化學(xué)習(xí)算法分為
2021-04-08 11:41:5811

六個(gè)構(gòu)建機(jī)器學(xué)習(xí)模型需避免的錯(cuò)誤

為中心,基于對(duì)業(yè)務(wù)問題的理解,并且數(shù)據(jù)和機(jī)器學(xué)習(xí)算法必須應(yīng)用于解決問題,從而構(gòu)建一個(gè)能夠滿足項(xiàng)目需求的機(jī)器學(xué)習(xí)模型。
2021-05-05 16:39:001238

輕量級(jí)分布式機(jī)器學(xué)習(xí)系統(tǒng)及算法

為滿足大規(guī)模機(jī)器學(xué)習(xí)系統(tǒng)高定制化、低耦合與低資源消耗的需求,設(shè)計(jì)并實(shí)現(xiàn)一個(gè)輕量級(jí)分布式機(jī)器學(xué)習(xí)系統(tǒng)。采用模塊化分層設(shè)計(jì)并移植多種主流的機(jī)器學(xué)習(xí)與深度學(xué)習(xí)算法,同時(shí)提出參數(shù)服務(wù)器與動(dòng)態(tài)Ring-
2021-05-11 14:51:0916

詳談機(jī)器視覺與計(jì)算機(jī)視覺的異同

詳談機(jī)器視覺與計(jì)算機(jī)視覺的異同
2021-05-28 09:55:428

基于機(jī)器學(xué)習(xí)的哈希檢索算法綜述

基于機(jī)器學(xué)習(xí)的哈希檢索算法綜述
2021-06-10 11:05:565

基于WordNet模型的遷移學(xué)習(xí)文本特征對(duì)齊算法

基于WordNet模型的遷移學(xué)習(xí)文本特征對(duì)齊算法
2021-06-27 16:14:438

數(shù)據(jù)機(jī)器學(xué)習(xí)疑難點(diǎn)解決方案介紹

機(jī)器學(xué)習(xí)一般涉及數(shù)據(jù)準(zhǔn)備、特征提取、算法選擇、模型評(píng)估、以及模型存儲(chǔ)與復(fù)用等諸多步驟;而材料數(shù)據(jù)往往還涉及晶體或分子的結(jié)構(gòu)特征和元素特征等的提取,更是增加了材料數(shù)據(jù)機(jī)器學(xué)習(xí)的難度。本次直播將重點(diǎn)講述材料數(shù)據(jù)機(jī)器學(xué)習(xí)的難點(diǎn)、痛點(diǎn)、以及解決方案。
2021-12-17 09:12:411300

移植深度學(xué)習(xí)算法模型到海思AI芯片

本文大致介紹將深度學(xué)習(xí)算法模型移植到海思AI芯片的總體流程和一些需要注意的細(xì)節(jié)。海思芯片移植深度學(xué)習(xí)算法模型,大致分為模型轉(zhuǎn)換,...
2022-01-26 19:42:3511

機(jī)器學(xué)習(xí)模型的可解釋性算法詳解

本文介紹目前常見的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù),包括它們的相對(duì)優(yōu)點(diǎn)和缺點(diǎn)。
2022-02-16 16:21:313986

機(jī)器學(xué)習(xí)和深度學(xué)習(xí)算法流程

但是無可否認(rèn)的是深度學(xué)習(xí)實(shí)在太好用啦!極大地簡(jiǎn)化了傳統(tǒng)機(jī)器學(xué)習(xí)的整體算法分析和學(xué)習(xí)流程,更重要的是在一些通用的領(lǐng)域任務(wù)刷新了傳統(tǒng)機(jī)器學(xué)習(xí)算法達(dá)不到的精度和準(zhǔn)確率。
2022-04-26 15:07:204084

Kria SOM 加速實(shí)現(xiàn)從算法機(jī)器學(xué)習(xí)模型

不久以前,從算法到現(xiàn)場(chǎng)機(jī)器學(xué)習(xí)( ML )模型仍然需要經(jīng)歷漫長(zhǎng)而復(fù)雜的道路。對(duì)于一些企業(yè)而言,如果能夠接觸到具有神經(jīng)網(wǎng)絡(luò)部署經(jīng)驗(yàn)的 ML 專家,則可能會(huì)有一些選擇,但其開發(fā)工作卻非常耗時(shí)。賽靈思依托
2022-08-02 15:04:18336

17個(gè)機(jī)器學(xué)習(xí)的常用算法

根據(jù)數(shù)據(jù)類型的不同,對(duì)一個(gè)問題的建模有不同的方式。在機(jī)器學(xué)習(xí)或者人工智能領(lǐng)域,人們首先會(huì)考慮算法學(xué)習(xí)方式。在機(jī)器學(xué)習(xí)領(lǐng)域,有幾種主要的學(xué)習(xí)方式。將算法按照學(xué)習(xí)方式分類是一個(gè)不錯(cuò)的想法,這樣可以讓人們?cè)诮:?b class="flag-6" style="color: red">算法選擇的時(shí)候考慮能根據(jù)輸入數(shù)據(jù)來選擇最合適的算法來獲得最好的結(jié)果。
2022-08-11 11:20:171399

17個(gè)機(jī)器學(xué)習(xí)的常用算法

源自:AI知識(shí)干貨 根據(jù)數(shù)據(jù)類型的不同,對(duì)一個(gè)問題的建模有不同的方式。在機(jī)器學(xué)習(xí)或者人工智能領(lǐng)域,人們首先會(huì)考慮算法學(xué)習(xí)方式。在機(jī)器學(xué)習(xí)領(lǐng)域,有幾種主要的學(xué)習(xí)方式。將算法按照學(xué)習(xí)方式分類是一個(gè)不錯(cuò)
2022-08-22 09:57:331446

機(jī)器學(xué)習(xí)算法的基礎(chǔ)介紹

現(xiàn)在,機(jī)器學(xué)習(xí)有很多算法。如此多的算法,可能對(duì)于初學(xué)者來說,是相當(dāng)不堪重負(fù)的。今天,我們將簡(jiǎn)要介紹 10 種最流行的機(jī)器學(xué)習(xí)算法,這樣你就可以適應(yīng)這個(gè)激動(dòng)人心的機(jī)器學(xué)習(xí)世界了!
2022-10-24 10:08:421518

Redis欺詐檢測(cè)方案機(jī)器學(xué)習(xí)算法

中,虹科云科技將探討如何使用機(jī)器學(xué)習(xí)進(jìn)行欺詐檢測(cè)、一些最常用的機(jī)器學(xué)習(xí)欺詐檢測(cè)算法和最佳實(shí)踐,同時(shí) 虹科云科技將會(huì)在11月1日20:00舉辦免費(fèi)直播,從Redis數(shù)據(jù)庫角度分享企業(yè)欺詐檢測(cè)解決方案。 用于欺詐檢測(cè)的最佳機(jī)器學(xué)習(xí)
2022-11-01 17:59:48273

機(jī)器學(xué)習(xí)模型的可解釋性算法匯總

目前很多機(jī)器學(xué)習(xí)模型可以做出非常好的預(yù)測(cè),但是它們并不能很好地解釋他們是如何進(jìn)行預(yù)測(cè)的,很多數(shù)據(jù)科學(xué)家都很難知曉為什么該算法會(huì)得到這樣的預(yù)測(cè)結(jié)果。這是非常致命的,因?yàn)槿绻覀儫o法知道某個(gè)算法是如何進(jìn)行預(yù)測(cè),那么我們將很難將其前一道其它的問題中,很難進(jìn)行算法的debug。
2023-02-03 11:34:061038

機(jī)器學(xué)習(xí)算法的隨機(jī)數(shù)據(jù)生成簡(jiǎn)析

學(xué)習(xí)機(jī)器學(xué)習(xí)算法的過程中,我們經(jīng)常需要數(shù)據(jù)來驗(yàn)證算法,調(diào)試參數(shù)。
2023-03-15 09:07:48360

如何評(píng)估機(jī)器學(xué)習(xí)模型的性能?機(jī)器學(xué)習(xí)算法選擇

如何評(píng)估機(jī)器學(xué)習(xí)模型的性能?典型的回答可能是:首先,將訓(xùn)練數(shù)據(jù)饋送給學(xué)習(xí)算法學(xué)習(xí)一個(gè)模型。第二,預(yù)測(cè)測(cè)試集的標(biāo)簽。第三,計(jì)算模型對(duì)測(cè)試集的預(yù)測(cè)準(zhǔn)確率。
2023-04-04 14:15:19549

機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

? 一、機(jī)器學(xué)習(xí)基礎(chǔ)概念 ? 關(guān)于數(shù)據(jù) ? 機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。 ? Iris 鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)機(jī)器學(xué)習(xí)領(lǐng)域都經(jīng)常被用作示例。數(shù)據(jù)
2023-05-28 11:29:41652

機(jī)器學(xué)習(xí)模型的集成方法總結(jié):Bagging, Boosting, Stacking, Voting, Blending

一個(gè)數(shù)據(jù)集(用于訓(xùn)練模型)和一個(gè)算法(從數(shù)據(jù)學(xué)習(xí))。但是有些模型的準(zhǔn)確性通常很低產(chǎn)生的結(jié)果也不太準(zhǔn)確,克服這個(gè)問題的最簡(jiǎn)單的解決方案之一是在機(jī)器學(xué)習(xí)模型上使用集成學(xué)習(xí)
2022-10-19 11:29:21528

基于機(jī)器學(xué)習(xí)算法的校準(zhǔn)優(yōu)化方案

基于機(jī)器學(xué)習(xí)算法的校準(zhǔn)優(yōu)化方案
2023-06-29 12:35:49236

機(jī)器學(xué)習(xí)構(gòu)建ML模型實(shí)踐

實(shí)踐中的機(jī)器學(xué)習(xí):構(gòu)建 ML 模型
2023-07-05 16:30:36412

機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別

  機(jī)器學(xué)習(xí)是一種方法,利用算法來讓機(jī)器可以自我學(xué)習(xí)和適應(yīng),而且不需要明確地編程。在許多應(yīng)用中,需要機(jī)器使用歷史數(shù)據(jù)訓(xùn)練模型,然后使用該模型來對(duì)新數(shù)據(jù)進(jìn)行預(yù)測(cè)或分類
2023-08-02 17:36:34333

智能數(shù)字辨識(shí)水表-基于機(jī)器學(xué)習(xí)算法

智智能數(shù)字辨識(shí)水表-基于機(jī)器學(xué)習(xí)算法
2023-08-10 11:26:40371

什么是深度學(xué)習(xí)算法?深度學(xué)習(xí)算法的應(yīng)用

什么是深度學(xué)習(xí)算法?深度學(xué)習(xí)算法的應(yīng)用 深度學(xué)習(xí)算法被認(rèn)為是人工智能的核心,它是一種模仿人類大腦神經(jīng)元的計(jì)算模型。深度學(xué)習(xí)機(jī)器學(xué)習(xí)的一種變體,主要通過變換各種架構(gòu)來對(duì)大量數(shù)據(jù)進(jìn)行學(xué)習(xí)以及分類處理
2023-08-17 16:03:041305

深度學(xué)習(xí)框架和深度學(xué)習(xí)算法教程

了基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)方法。 深度學(xué)習(xí)算法可以分為兩大類:監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)。監(jiān)督學(xué)習(xí)的基本任務(wù)是訓(xùn)練模型學(xué)習(xí)輸入數(shù)據(jù)的特征和其對(duì)應(yīng)的標(biāo)簽,然后用于新數(shù)據(jù)的預(yù)測(cè)。而無監(jiān)督學(xué)習(xí)通常用于聚類、降維和生成模型等任務(wù)中
2023-08-17 16:11:26638

機(jī)器學(xué)習(xí)算法的5種基本算子

機(jī)器學(xué)習(xí)算法的5種基本算子 機(jī)器學(xué)習(xí)是一種重要的人工智能技術(shù),它是為了讓計(jì)算機(jī)能夠通過數(shù)據(jù)自主的學(xué)習(xí)和提升能力而發(fā)明的。機(jī)器學(xué)習(xí)算法機(jī)器學(xué)習(xí)的核心,它是指讓計(jì)算機(jī)從數(shù)據(jù)中進(jìn)行自主學(xué)習(xí)并且可以實(shí)現(xiàn)
2023-08-17 16:11:461245

機(jī)器學(xué)習(xí)算法匯總 機(jī)器學(xué)習(xí)算法分類 機(jī)器學(xué)習(xí)算法模型

機(jī)器學(xué)習(xí)算法匯總 機(jī)器學(xué)習(xí)算法分類 機(jī)器學(xué)習(xí)算法模型 機(jī)器學(xué)習(xí)是人工智能的分支之一,它通過分析和識(shí)別數(shù)據(jù)模式,學(xué)習(xí)從中提取規(guī)律,并用于未來的決策和預(yù)測(cè)。在機(jī)器學(xué)習(xí)中,算法是最基本的組成部分之一。算法
2023-08-17 16:11:48632

機(jī)器學(xué)習(xí)算法總結(jié) 機(jī)器學(xué)習(xí)算法是什么 機(jī)器學(xué)習(xí)算法優(yōu)缺點(diǎn)

機(jī)器學(xué)習(xí)算法總結(jié) 機(jī)器學(xué)習(xí)算法是什么?機(jī)器學(xué)習(xí)算法優(yōu)缺點(diǎn)? 機(jī)器學(xué)習(xí)算法總結(jié) 機(jī)器學(xué)習(xí)算法是一種能夠從數(shù)據(jù)中自動(dòng)學(xué)習(xí)算法。它能夠從訓(xùn)練數(shù)據(jù)中學(xué)習(xí)特征,進(jìn)而對(duì)未知數(shù)據(jù)進(jìn)行分類、回歸、聚類等任務(wù)。通過
2023-08-17 16:11:50939

機(jī)器學(xué)習(xí)算法入門 機(jī)器學(xué)習(xí)算法介紹 機(jī)器學(xué)習(xí)算法對(duì)比

機(jī)器學(xué)習(xí)算法入門 機(jī)器學(xué)習(xí)算法介紹 機(jī)器學(xué)習(xí)算法對(duì)比 機(jī)器學(xué)習(xí)算法入門、介紹和對(duì)比 隨著機(jī)器學(xué)習(xí)的普及,越來越多的人想要了解和學(xué)習(xí)機(jī)器學(xué)習(xí)算法。在這篇文章中,我們將會(huì)簡(jiǎn)單介紹機(jī)器學(xué)習(xí)算法的基本概念
2023-08-17 16:27:15569

機(jī)器學(xué)習(xí)vsm算法

機(jī)器學(xué)習(xí)vsm算法 隨著機(jī)器學(xué)習(xí)技術(shù)的不斷發(fā)展,相似性計(jì)算是機(jī)器學(xué)習(xí)中的重要組成部分。在信息檢索、文本挖掘、機(jī)器翻譯等領(lǐng)域中,相似性計(jì)算是必不可少的一項(xiàng)技術(shù)。在這些領(lǐng)域中,我們通常使用向量空間模型
2023-08-17 16:29:35529

機(jī)器學(xué)習(xí)是什么意思?機(jī)器學(xué)習(xí)屬于什么分支?機(jī)器學(xué)習(xí)有什么用處?

機(jī)器學(xué)習(xí)是什么意思?機(jī)器學(xué)習(xí)屬于什么分支?機(jī)器學(xué)習(xí)是什么有什么用處? 機(jī)器學(xué)習(xí)是指讓計(jì)算機(jī)通過經(jīng)驗(yàn)來不斷優(yōu)化和改進(jìn)自身的算法模型的過程。因此,機(jī)器學(xué)習(xí)可以被理解為是一種從數(shù)據(jù)中自動(dòng)獲取規(guī)律和知識(shí)
2023-08-17 16:30:041148

機(jī)器學(xué)習(xí)有哪些算法?機(jī)器學(xué)習(xí)分類算法有哪些?機(jī)器學(xué)習(xí)預(yù)判有哪些算法

機(jī)器學(xué)習(xí)有哪些算法?機(jī)器學(xué)習(xí)分類算法有哪些?機(jī)器學(xué)習(xí)預(yù)判有哪些算法? 機(jī)器學(xué)習(xí)是一種人工智能技術(shù),通過對(duì)數(shù)據(jù)的分析和學(xué)習(xí),為計(jì)算機(jī)提供智能決策。機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)機(jī)器學(xué)習(xí)的基礎(chǔ)。常見的機(jī)器學(xué)習(xí)算法
2023-08-17 16:30:111245

機(jī)器學(xué)習(xí)的基本流程和十大算法

為了進(jìn)行機(jī)器學(xué)習(xí)和數(shù)據(jù)挖掘任務(wù),數(shù)據(jù)科學(xué)家們提出了各種模型,在眾多的數(shù)據(jù)挖掘模型中,國際權(quán)威的學(xué)術(shù)組織 ICDM(the IEEE International Conference on Data Mining)評(píng)選出了十大經(jīng)典的算法。
2023-10-31 11:30:55447

基于機(jī)器視覺和深度學(xué)習(xí)的焊接質(zhì)量檢測(cè)系統(tǒng)

基于機(jī)器視覺和深度學(xué)習(xí)的焊接質(zhì)量檢測(cè)系統(tǒng)是一種創(chuàng)新性的技術(shù)解決方案,它結(jié)合了先進(jìn)的計(jì)算機(jī)視覺和深度學(xué)習(xí)算法,用于實(shí)時(shí)監(jiān)測(cè)和評(píng)估焊接過程中的焊縫質(zhì)量。這一系統(tǒng)在工業(yè)制造中發(fā)揮著重要作用,提高了焊接質(zhì)量
2024-01-18 17:50:52239

已全部加載完成