0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)vsm算法

工程師鄧生 ? 來(lái)源:未知 ? 作者:劉芹 ? 2023-08-17 16:29 ? 次閱讀

機(jī)器學(xué)習(xí)vsm算法

隨著機(jī)器學(xué)習(xí)技術(shù)的不斷發(fā)展,相似性計(jì)算是機(jī)器學(xué)習(xí)中的重要組成部分。在信息檢索、文本挖掘、機(jī)器翻譯等領(lǐng)域中,相似性計(jì)算是必不可少的一項(xiàng)技術(shù)。在這些領(lǐng)域中,我們通常使用向量空間模型(VSM)算法計(jì)算相似性。本文將從以下幾個(gè)方面介紹機(jī)器學(xué)習(xí)vsm算法。

1、向量空間模型

向量空間模型是一種常見(jiàn)的文本表示方法,根據(jù)文本的詞頻向量將文本映射到一個(gè)高維向量空間中。這種方法在信息檢索中被廣泛使用,可以使用余弦相似性度量?jī)蓚€(gè)文本向量之間的相似度??梢允褂胹cikit-learn庫(kù)中的CountVectorizer和TfidfVectorizer來(lái)將文本轉(zhuǎn)換為向量并計(jì)算文本相似性。

向量空間模型常用的文本相似性計(jì)算方法有余弦相似度和歐幾里得距離。余弦相似度是一種通過(guò)計(jì)算向量夾角的余弦值來(lái)度量?jī)蓚€(gè)向量之間的相似度的方法。歐幾里得距離是一種度量?jī)蓚€(gè)向量之間距離的方法。它可以用于在多維空間中計(jì)算點(diǎn)與點(diǎn)之間的距離和向量之間的距離。

2、TF-IDF算法

TF-IDF(Term Frequency-Inverse Document Frequency)是一種常見(jiàn)的文本特征抽取算法。TF-IDF可以通過(guò)統(tǒng)計(jì)文本中出現(xiàn)的詞語(yǔ)的頻率來(lái)表示文本的重要程度。這個(gè)算法的想法是,如果一個(gè)詞在一個(gè)文本中出現(xiàn)的次數(shù)很多,但在其他文本中很少出現(xiàn),那么這個(gè)詞在該文本中的重要性應(yīng)該很高。TF-IDF算法的計(jì)算公式為:

TF-IDF(w,d) = TF(w,d) * IDF(w)

其中,TF(w,d) 表示在文檔 d 中詞語(yǔ) w 出現(xiàn)的次數(shù)除以文檔 d 的總詞數(shù),IDF(w) 表示逆文檔頻率,它的計(jì)算公式為:

IDF(w) = log(N/df(w))

其中,N表示語(yǔ)料庫(kù)中文檔的總數(shù),df(w) 表示包含詞語(yǔ) w 的文檔數(shù)。TF-IDF算法是基于詞頻統(tǒng)計(jì)的,因此它可以很好地區(qū)分不同的文本,但是它對(duì)于一些語(yǔ)言不太適用,比如中文。在中文中,一個(gè)單詞可能包含多個(gè)漢字,因此在使用TF-IDF算法時(shí)需要使用分詞技術(shù)將中文文本拆分成獨(dú)立的詞語(yǔ)。

3、機(jī)器學(xué)習(xí)中的應(yīng)用

在機(jī)器學(xué)習(xí)中,VSM算法常用于計(jì)算文本之間的相似度。在自然語(yǔ)言處理領(lǐng)域中,可以使用VSM算法來(lái)計(jì)算文本的相似性。例如,在文本分類以及情感分析中,可以使用VSM算法來(lái)計(jì)算不同文本之間的相似性。在機(jī)器翻譯中,可以使用VSM算法來(lái)計(jì)算源語(yǔ)言和目標(biāo)語(yǔ)言之間的相似性,從而實(shí)現(xiàn)機(jī)器翻譯的自動(dòng)化。

對(duì)于機(jī)器學(xué)習(xí)應(yīng)用,VSM算法也有其限制。由于VSM算法只考慮了詞語(yǔ)的頻率,沒(méi)有考慮詞語(yǔ)之間的語(yǔ)境關(guān)系,因此在一些自然語(yǔ)言處理任務(wù)中,VSM算法的效果可能會(huì)有所削弱。因此,需要結(jié)合其他算法,如神經(jīng)網(wǎng)絡(luò)算法、卷積神經(jīng)網(wǎng)絡(luò)等,來(lái)提升機(jī)器學(xué)習(xí)應(yīng)用的效果。

綜上所述,VSM算法是自然語(yǔ)言處理領(lǐng)域中常用的算法之一,它可以用于文本相似性計(jì)算、文本分類、情感分析以及機(jī)器翻譯等任務(wù)。然而,需要注意的是,VSM算法的效果往往受到詞語(yǔ)語(yǔ)義關(guān)系的限制,因此在實(shí)際應(yīng)用中需要結(jié)合其他算法來(lái)提升機(jī)器學(xué)習(xí)的效果。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    來(lái)源:Master編程樹(shù)“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆](méi)有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?407次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為一種專門(mén)為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?456次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)
    發(fā)表于 10-24 17:22 ?2488次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    LIBS結(jié)合機(jī)器學(xué)習(xí)算法的江西名優(yōu)春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對(duì)象,研究激光誘導(dǎo)擊穿光譜結(jié)合機(jī)器學(xué)習(xí)的茶葉鑒別方法。將茶葉茶,水?dāng)?shù)據(jù)融合可有效鑒別春茶采收期,且數(shù)據(jù)融合后表現(xiàn)出更好的穩(wěn)定性和魯棒性,LIBS結(jié)合機(jī)器
    的頭像 發(fā)表于 10-22 18:05 ?253次閱讀
    LIBS結(jié)合<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>的江西名優(yōu)春茶采收期鑒別

    深度學(xué)習(xí)的基本原理與核心算法

    隨著大數(shù)據(jù)時(shí)代的到來(lái),傳統(tǒng)機(jī)器學(xué)習(xí)方法在處理復(fù)雜模式上的局限性日益凸顯。深度學(xué)習(xí)(Deep Learning)作為一種新興的人工智能技術(shù),以其強(qiáng)大的非線性表達(dá)能力和自學(xué)習(xí)能力,在圖像識(shí)
    的頭像 發(fā)表于 07-04 11:44 ?2059次閱讀

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個(gè)重要分支,其目標(biāo)是通過(guò)讓計(jì)算機(jī)自動(dòng)從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無(wú)需進(jìn)行明確的編程。本文將深入解讀幾種常見(jiàn)的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?1044次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時(shí)代的到來(lái),數(shù)據(jù)量的爆炸性增長(zhǎng)對(duì)數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過(guò)訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入探討機(jī)器
    的頭像 發(fā)表于 07-02 11:22 ?631次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無(wú)疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來(lái)了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?1378次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)
    的頭像 發(fā)表于 06-27 08:27 ?1661次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典<b class='flag-5'>算法</b>與應(yīng)用

    深入探討機(jī)器學(xué)習(xí)的可視化技術(shù)

    機(jī)器學(xué)習(xí)可視化(簡(jiǎn)稱ML可視化)一般是指通過(guò)圖形或交互方式表示機(jī)器學(xué)習(xí)模型、數(shù)據(jù)及其關(guān)系的過(guò)程。目標(biāo)是使理解模型的復(fù)雜算法和數(shù)據(jù)模式更容易,
    發(fā)表于 04-25 11:17 ?419次閱讀
    深入探討<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的可視化技術(shù)

    機(jī)器學(xué)習(xí)怎么進(jìn)入人工智能

    ,人工智能已成為一個(gè)熱門(mén)領(lǐng)域,涉及到多個(gè)行業(yè)和領(lǐng)域,例如語(yǔ)音識(shí)別、機(jī)器翻譯、圖像識(shí)別等。 在編程中進(jìn)行人工智能的關(guān)鍵是使用機(jī)器學(xué)習(xí)算法,這是一類基于樣本數(shù)據(jù)和模型訓(xùn)練來(lái)進(jìn)行預(yù)測(cè)和判斷的
    的頭像 發(fā)表于 04-04 08:41 ?323次閱讀

    機(jī)器學(xué)習(xí)8大調(diào)參技巧

    今天給大家一篇關(guān)于機(jī)器學(xué)習(xí)調(diào)參技巧的文章。超參數(shù)調(diào)優(yōu)是機(jī)器學(xué)習(xí)例程中的基本步驟之一。該方法也稱為超參數(shù)優(yōu)化,需要搜索超參數(shù)的最佳配置以實(shí)現(xiàn)最佳性能。
    的頭像 發(fā)表于 03-23 08:26 ?624次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>8大調(diào)參技巧

    人工智能和機(jī)器學(xué)習(xí)的頂級(jí)開(kāi)發(fā)板有哪些?

    機(jī)器學(xué)習(xí)(ML)和人工智能(AI)不再局限于高端服務(wù)器或云平臺(tái)。得益于集成電路(IC)和軟件技術(shù)的新發(fā)展,在微型控制器和微型計(jì)算機(jī)上實(shí)現(xiàn)機(jī)器學(xué)習(xí)算法
    的頭像 發(fā)表于 02-29 18:59 ?830次閱讀
    人工智能和<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的頂級(jí)開(kāi)發(fā)板有哪些?

    AI算法的本質(zhì)是模擬人類智能,讓機(jī)器實(shí)現(xiàn)智能化

    電子發(fā)燒友網(wǎng)報(bào)道(文/李彎彎)AI算法是人工智能領(lǐng)域中使用的算法,用于模擬、延伸和擴(kuò)展人的智能。這些算法可以通過(guò)機(jī)器學(xué)習(xí)、深度
    的頭像 發(fā)表于 02-07 00:07 ?5797次閱讀

    目前主流的深度學(xué)習(xí)算法模型和應(yīng)用案例

    深度學(xué)習(xí)在科學(xué)計(jì)算中獲得了廣泛的普及,其算法被廣泛用于解決復(fù)雜問(wèn)題的行業(yè)。所有深度學(xué)習(xí)算法都使用不同類型的神經(jīng)網(wǎng)絡(luò)來(lái)執(zhí)行特定任務(wù)。
    的頭像 發(fā)表于 01-03 10:28 ?1958次閱讀
    目前主流的深度<b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>模型和應(yīng)用案例