0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)算法入門 機(jī)器學(xué)習(xí)算法介紹 機(jī)器學(xué)習(xí)算法對比

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-17 16:27 ? 次閱讀

機(jī)器學(xué)習(xí)算法入門 機(jī)器學(xué)習(xí)算法介紹 機(jī)器學(xué)習(xí)算法對比

機(jī)器學(xué)習(xí)算法入門、介紹和對比

隨著機(jī)器學(xué)習(xí)的普及,越來越多的人想要了解和學(xué)習(xí)機(jī)器學(xué)習(xí)算法。在這篇文章中,我們將會簡單介紹機(jī)器學(xué)習(xí)算法的基本概念,討論一些主要的機(jī)器學(xué)習(xí)算法,以及比較它們之間的優(yōu)缺點,以便于您選擇適合的算法。

一、機(jī)器學(xué)習(xí)算法的基本概念

機(jī)器學(xué)習(xí)是一種人工智能的技術(shù),它允許計算機(jī)從歷史數(shù)據(jù)中學(xué)習(xí)模式,以便于更好地預(yù)測未來的數(shù)據(jù)。機(jī)器學(xué)習(xí)算法通常分為三種類型:

1. 監(jiān)督學(xué)習(xí)算法:這類算法依賴于有標(biāo)簽的數(shù)據(jù),也就是說數(shù)據(jù)集中包含有正確的答案。在監(jiān)督學(xué)習(xí)中,我們會訓(xùn)練一個模型,然后使用測試數(shù)據(jù)驗證這個模型的準(zhǔn)確性。

2. 無監(jiān)督學(xué)習(xí)算法:這類算法使用沒有標(biāo)簽的數(shù)據(jù),也就是說數(shù)據(jù)集中不包含正確答案。無監(jiān)督學(xué)習(xí)的目的是尋找數(shù)據(jù)之間的隱藏結(jié)構(gòu),例如聚類。

3. 強(qiáng)化學(xué)習(xí)算法:這類算法根據(jù)與環(huán)境交互的結(jié)果學(xué)習(xí)。強(qiáng)化學(xué)習(xí)用于學(xué)習(xí)一種行為模式,以便讓機(jī)器人智能體等能夠在動態(tài)環(huán)境中自主決策。

二、機(jī)器學(xué)習(xí)算法介紹

接下來,我們將介紹一些常用的機(jī)器學(xué)習(xí)算法。

1. 線性回歸算法

線性回歸是一種監(jiān)督學(xué)習(xí)算法,用于建立一個輸入變量與輸出變量之間的線性關(guān)系。例如,我們可以使用線性回歸算法來預(yù)測一個房子的價格。

2. 邏輯回歸算法

邏輯回歸也是一種監(jiān)督學(xué)習(xí)算法,用于分類問題。邏輯回歸算法基于線性回歸,通過一個 sigmoid 函數(shù)將其輸出映射到 0 或 1 之間。

3. 決策樹算法

決策樹是一種監(jiān)督學(xué)習(xí)算法,它可以自動地構(gòu)建一個樹形結(jié)構(gòu)來進(jìn)行決策。決策樹算法對于處理多分類問題和缺失數(shù)據(jù)較為有效。

4. 隨機(jī)森林算法

隨機(jī)森林算法是一種基于決策樹的監(jiān)督學(xué)習(xí)算法。它通過對輸入數(shù)據(jù)進(jìn)行 Bootstrap 和特征的隨機(jī)選擇對決策樹進(jìn)行改進(jìn),以達(dá)到更好的泛化能力。

5. KNN 算法

KNN 是一種無監(jiān)督學(xué)習(xí)算法,它通過比較數(shù)據(jù)之間的相似程度來進(jìn)行分類。它的核心思想是將數(shù)據(jù)分成多個最相似的子集,然后將新數(shù)據(jù)分類到這些子集中。

三、機(jī)器學(xué)習(xí)算法對比

在實際應(yīng)用中,我們需要根據(jù)數(shù)據(jù)類型、算法的復(fù)雜度以及我們的需求來選擇合適的機(jī)器學(xué)習(xí)算法。

在特征較復(fù)雜的數(shù)據(jù)集上,邏輯回歸和決策樹達(dá)到的精度會較低,這時我們可以考慮使用 SVM、隨機(jī)森林等模型。

在處理大規(guī)模數(shù)據(jù)集時,KNN 和決策樹算法需要較長的時間進(jìn)行訓(xùn)練,而且占用的內(nèi)存較多。這時我們可以考慮使用隨機(jī)森林或者神經(jīng)網(wǎng)絡(luò)等算法。

總之,在選擇算法時,我們需要考慮多個因素,包括數(shù)據(jù)集、算法的目的、復(fù)雜度以及實時性等。

綜上所述,機(jī)器學(xué)習(xí)算法是一種強(qiáng)大的工具,可以用于預(yù)測、分類和發(fā)現(xiàn)隱藏的模式。在學(xué)習(xí)機(jī)器學(xué)習(xí)算法時,需要對不同算法的表現(xiàn)、局限性和復(fù)雜度有一定的了解,并選擇最適合您需求的算法。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 0人收藏

    評論

    相關(guān)推薦

    請問STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個系列的芯片?

    STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個系列的芯片?
    發(fā)表于 03-13 07:34

    機(jī)器學(xué)習(xí)模型市場前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場
    的頭像 發(fā)表于 02-13 09:39 ?224次閱讀

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學(xué)習(xí) AI,機(jī)器學(xué)習(xí)算法

    前言 由于本人最近在學(xué)習(xí)一些機(jī)器算法,AI 算法的知識,需要搭建一個學(xué)習(xí)環(huán)境,所以就在最近購買的華為云 Flexus X 實例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?371次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學(xué)習(xí)</b> AI,<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多
    的頭像 發(fā)表于 12-30 09:16 ?856次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    來源:Master編程樹“機(jī)器學(xué)習(xí)”最初的研究動機(jī)是讓計算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實現(xiàn)人工智能。因為沒有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?717次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?965次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與其他機(jī)器學(xué)習(xí)算法的比較

    隨著人工智能技術(shù)的飛速發(fā)展,機(jī)器學(xué)習(xí)算法在各個領(lǐng)域中扮演著越來越重要的角色。長短期記憶網(wǎng)絡(luò)(LSTM)作為一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),因其在處理序列數(shù)據(jù)方面的優(yōu)勢而受到廣泛關(guān)注。 LSTM
    的頭像 發(fā)表于 11-13 10:17 ?1707次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2665次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    LIBS結(jié)合機(jī)器學(xué)習(xí)算法的江西名優(yōu)春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對象,研究激光誘導(dǎo)擊穿光譜結(jié)合機(jī)器學(xué)習(xí)的茶葉鑒別方法。將茶葉茶,水?dāng)?shù)據(jù)融合可有效鑒別春茶采收期,且數(shù)據(jù)融合后表現(xiàn)出更好的穩(wěn)定性和魯棒性,LIBS結(jié)合機(jī)器
    的頭像 發(fā)表于 10-22 18:05 ?501次閱讀
    LIBS結(jié)合<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>的江西名優(yōu)春茶采收期鑒別

    【「時間序列與機(jī)器學(xué)習(xí)」閱讀體驗】+ 鳥瞰這本書

    清晰,從時間序列分析的基礎(chǔ)理論出發(fā),逐步深入到機(jī)器學(xué)習(xí)算法在時間序列預(yù)測中的應(yīng)用,內(nèi)容全面,循序漸進(jìn)。每一章都經(jīng)過精心設(shè)計,對理論知識進(jìn)行了詳細(xì)的闡述,對實際案例進(jìn)行了生動的展示,使讀者在理論與實踐
    發(fā)表于 08-12 11:28

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個重要分支,其目標(biāo)是通過讓計算機(jī)自動從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無需進(jìn)行明確的編程。本文將深入解讀幾種常見的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?1958次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時代的到來,數(shù)據(jù)量的爆炸性增長對數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入探討機(jī)器
    的頭像 發(fā)表于 07-02 11:22 ?1099次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)對比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無疑是兩大核心驅(qū)動力。它們各自以其獨特的方式推動著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?1986次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個經(jīng)典數(shù)據(jù)集,在統(tǒng)計學(xué)習(xí)
    的頭像 發(fā)表于 06-27 08:27 ?1867次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典<b class='flag-5'>算法</b>與應(yīng)用

    機(jī)器學(xué)習(xí)入門:基本概念介紹

    機(jī)器學(xué)習(xí)(GraphMachineLearning,簡稱GraphML)是機(jī)器學(xué)習(xí)的一個分支,專注于利用圖形結(jié)構(gòu)的數(shù)據(jù)。在圖形結(jié)構(gòu)中,數(shù)據(jù)以圖的形式表示,其中的節(jié)點(或頂點)表示實體
    的頭像 發(fā)表于 05-16 08:27 ?661次閱讀
    圖<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>入門</b>:基本概念<b class='flag-5'>介紹</b>