0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)算法匯總 機(jī)器學(xué)習(xí)算法分類 機(jī)器學(xué)習(xí)算法模型

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-17 16:11 ? 次閱讀

機(jī)器學(xué)習(xí)算法匯總 機(jī)器學(xué)習(xí)算法分類 機(jī)器學(xué)習(xí)算法模型

機(jī)器學(xué)習(xí)是人工智能的分支之一,它通過分析和識(shí)別數(shù)據(jù)模式,學(xué)習(xí)從中提取規(guī)律,并用于未來的決策和預(yù)測(cè)。在機(jī)器學(xué)習(xí)中,算法是最基本的組成部分之一。算法是解決具體問題的一系列步驟,機(jī)器學(xué)習(xí)的算法被設(shè)計(jì)用于從大量的數(shù)據(jù)中自動(dòng)學(xué)習(xí)并不斷改進(jìn)自身的性能。本文將為大家介紹機(jī)器學(xué)習(xí)算法匯總和分類,以及常用的機(jī)器學(xué)習(xí)算法模型。

機(jī)器學(xué)習(xí)算法匯總

機(jī)器學(xué)習(xí)算法的類型繁多,主要分為無監(jiān)督學(xué)習(xí)、監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)三種。無監(jiān)督學(xué)習(xí)是指沒有明確的目標(biāo)變量,機(jī)器學(xué)習(xí)系統(tǒng)需要自己找出數(shù)據(jù)中的模式。監(jiān)督學(xué)習(xí)是指輸入數(shù)據(jù)已經(jīng)被標(biāo)記好了結(jié)果,機(jī)器學(xué)習(xí)系統(tǒng)可根據(jù)標(biāo)記來學(xué)習(xí)預(yù)測(cè)新實(shí)例的標(biāo)記。強(qiáng)化學(xué)習(xí)是指機(jī)器學(xué)習(xí)系統(tǒng)通過嘗試與環(huán)境交互來學(xué)習(xí)最佳行動(dòng)策略。

無監(jiān)督學(xué)習(xí)常用的算法包括:聚類、關(guān)聯(lián)分析、主題模型等。聚類是將相似的樣本分組,不相似的樣本分離。關(guān)聯(lián)分析是在數(shù)據(jù)中尋找有趣的關(guān)聯(lián)關(guān)系,例如購物籃中的商品組合。主題模型是根據(jù)文本數(shù)據(jù)中的詞匯分布模型,生成該文本的主題。

監(jiān)督學(xué)習(xí)常用的算法包括:回歸、分類、推薦系統(tǒng)等?;貧w從已有數(shù)據(jù)中尋找函數(shù)的最佳擬合,可用于預(yù)測(cè)數(shù)值型結(jié)果。分類將樣本分到預(yù)先定義的類別,可用于預(yù)測(cè)分類型結(jié)果。推薦系統(tǒng)是指在數(shù)據(jù)集中尋找相關(guān)的數(shù)據(jù),用于向用戶推薦個(gè)性化內(nèi)容。

強(qiáng)化學(xué)習(xí)常用的算法包括:Q學(xué)習(xí)、策略梯度等。Q學(xué)習(xí)是用于動(dòng)態(tài)決策過程的一種學(xué)習(xí)算法,用于從環(huán)境和獎(jiǎng)勵(lì)反饋中學(xué)習(xí)最佳行動(dòng)策略。策略梯度是優(yōu)化策略的一種方法,可以在高維的連續(xù)動(dòng)作空間中實(shí)現(xiàn)優(yōu)化。

機(jī)器學(xué)習(xí)算法分類

除了前面提到的分類方式,機(jī)器學(xué)習(xí)算法還可以按照其學(xué)習(xí)方式、算法特點(diǎn)等方式進(jìn)行分類。

按照學(xué)習(xí)方式,機(jī)器學(xué)習(xí)算法被分為基于實(shí)例的學(xué)習(xí)、基于統(tǒng)計(jì)的學(xué)習(xí)、基于規(guī)則的學(xué)習(xí)等?;趯?shí)例的學(xué)習(xí)是指學(xué)習(xí)從給定的例子中進(jìn)行的,例如KNN算法。基于統(tǒng)計(jì)的學(xué)習(xí)是指學(xué)習(xí)基于統(tǒng)計(jì)方法和模型,例如樸素貝葉斯算法。基于規(guī)則的學(xué)習(xí)是指從給定的一組規(guī)則集中進(jìn)行學(xué)習(xí),例如決策樹算法。

按照算法特點(diǎn),機(jī)器學(xué)習(xí)算法可以分為單一算法、集成算法等。單一算法是指使用一種算法來解決問題,例如線性回歸算法。集成算法是指將多個(gè)算法進(jìn)行組合,形成更強(qiáng)大的算法,例如隨機(jī)森林算法。

機(jī)器學(xué)習(xí)算法模型

機(jī)器學(xué)習(xí)算法模型是指通過機(jī)器學(xué)習(xí)算法生成的可以應(yīng)用于實(shí)際問題的模型。機(jī)器學(xué)習(xí)算法模型可以分為決策樹模型、邏輯回歸模型、神經(jīng)網(wǎng)絡(luò)模型等。

決策樹模型通過迭代地選擇最佳特征,并以分裂的方式形成一顆樹,由于它輸出結(jié)果的可解釋性強(qiáng),因此在數(shù)據(jù)挖掘和分類問題中特別流行。

邏輯回歸模型是一種借鑒了生物學(xué)上的回歸分析方法而來的機(jī)器學(xué)習(xí)模型,邏輯回歸模型在分類問題中被廣泛應(yīng)用,例如判斷垃圾郵件。

神經(jīng)網(wǎng)絡(luò)模型是一種通過模擬人類神經(jīng)系統(tǒng),學(xué)習(xí)高度機(jī)械化和抽象的任務(wù)的模型,由于其強(qiáng)大的能力,神經(jīng)網(wǎng)絡(luò)模型在圖像識(shí)別和語音識(shí)別等領(lǐng)域廣泛應(yīng)用。

總結(jié)

本文概述了機(jī)器學(xué)習(xí)算法的分類和常見的機(jī)器學(xué)習(xí)算法模型,機(jī)器學(xué)習(xí)算法的發(fā)展越來越成熟,應(yīng)用范圍越來越廣泛,這些算法的應(yīng)用已經(jīng)滲透到我們的生活中,我們有理由相信,未來機(jī)器學(xué)習(xí)算法的發(fā)展將會(huì)在更多領(lǐng)域創(chuàng)造更加驚人的應(yīng)用價(jià)值。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    十大鮮為人知卻功能強(qiáng)大的機(jī)器學(xué)習(xí)模型

    本文轉(zhuǎn)自:QuantML當(dāng)我們談?wù)?b class='flag-5'>機(jī)器學(xué)習(xí)時(shí),線性回歸、決策樹和神經(jīng)網(wǎng)絡(luò)這些常見的算法往往占據(jù)了主導(dǎo)地位。然而,除了這些眾所周知的模型之外,還存在一些鮮為人知但功能強(qiáng)大的
    的頭像 發(fā)表于 04-02 14:10 ?303次閱讀
    十大鮮為人知卻功能強(qiáng)大的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>模型</b>

    請(qǐng)問STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?

    STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?
    發(fā)表于 03-13 07:34

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器
    的頭像 發(fā)表于 02-13 09:39 ?224次閱讀

    華為云 Flexus X 實(shí)例部署安裝 Jupyter Notebook,學(xué)習(xí) AI,機(jī)器學(xué)習(xí)算法

    前言 由于本人最近在學(xué)習(xí)一些機(jī)器算法,AI 算法的知識(shí),需要搭建一個(gè)學(xué)習(xí)環(huán)境,所以就在最近購買的華為云 Flexus X 實(shí)例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?371次閱讀
    華為云 Flexus X 實(shí)例部署安裝 Jupyter Notebook,<b class='flag-5'>學(xué)習(xí)</b> AI,<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01 傳統(tǒng)
    的頭像 發(fā)表于 12-30 09:16 ?856次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    緊密。 NPU的起源與特點(diǎn) NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項(xiàng)目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設(shè)計(jì)目標(biāo)是提高機(jī)器學(xué)習(xí)算法的運(yùn)行效率,特別是在處理
    的頭像 發(fā)表于 11-15 09:19 ?965次閱讀

    【每天學(xué)點(diǎn)AI】KNN算法:簡(jiǎn)單有效的機(jī)器學(xué)習(xí)分類

    過程,其實(shí)就是一個(gè)簡(jiǎn)單的分類問題,而KNN(K-NearestNeighbors)算法正是模仿這種人類決策過程的機(jī)器學(xué)習(xí)算法。|什么是KNN
    的頭像 發(fā)表于 10-31 14:09 ?635次閱讀
    【每天學(xué)點(diǎn)AI】KNN<b class='flag-5'>算法</b>:簡(jiǎn)單有效的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>分類</b>器

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2665次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    LIBS結(jié)合機(jī)器學(xué)習(xí)算法的江西名優(yōu)春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對(duì)象,研究激光誘導(dǎo)擊穿光譜結(jié)合機(jī)器學(xué)習(xí)的茶葉鑒別方法。將茶葉茶,水?dāng)?shù)據(jù)融合可有效鑒別春茶采收期,且數(shù)據(jù)融合后表現(xiàn)出更好的穩(wěn)定性和魯棒性,LIBS結(jié)合機(jī)器
    的頭像 發(fā)表于 10-22 18:05 ?501次閱讀
    LIBS結(jié)合<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>的江西名優(yōu)春茶采收期鑒別

    利用Matlab函數(shù)實(shí)現(xiàn)深度學(xué)習(xí)算法

    在Matlab中實(shí)現(xiàn)深度學(xué)習(xí)算法是一個(gè)復(fù)雜但強(qiáng)大的過程,可以應(yīng)用于各種領(lǐng)域,如圖像識(shí)別、自然語言處理、時(shí)間序列預(yù)測(cè)等。這里,我將概述一個(gè)基本的流程,包括環(huán)境設(shè)置、數(shù)據(jù)準(zhǔn)備、模型設(shè)計(jì)、訓(xùn)練過程、以及測(cè)試和評(píng)估,并提供一個(gè)基于Mat
    的頭像 發(fā)表于 07-14 14:21 ?3049次閱讀

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個(gè)重要分支,其目標(biāo)是通過讓計(jì)算機(jī)自動(dòng)從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無需進(jìn)行明確的編程。本文將深入解讀幾種常見的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?1958次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時(shí)代的到來,數(shù)據(jù)量的爆炸性增長(zhǎng)對(duì)數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入
    的頭像 發(fā)表于 07-02 11:22 ?1099次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?1986次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)
    的頭像 發(fā)表于 06-27 08:27 ?1867次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典<b class='flag-5'>算法</b>與應(yīng)用

    名單公布!【書籍評(píng)測(cè)活動(dòng)NO.35】如何用「時(shí)間序列與機(jī)器學(xué)習(xí)」解鎖未來?

    ,如何將機(jī)器學(xué)習(xí)、深度學(xué)習(xí)或者大模型技術(shù)應(yīng)用在大規(guī)模的數(shù)據(jù)生產(chǎn)中,是一個(gè)非常關(guān)鍵的問題。 國(guó)內(nèi)外已出版了許多關(guān)于機(jī)器
    發(fā)表于 06-25 15:00

    電子發(fā)燒友

    中國(guó)電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會(huì)員交流學(xué)習(xí)
    • 獲取您個(gè)性化的科技前沿技術(shù)信息
    • 參加活動(dòng)獲取豐厚的禮品