0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

詳談機(jī)器學(xué)習(xí)的決策樹模型

如意 ? 來源:逍遙埠 ? 作者:逍遙埠 ? 2020-07-06 09:49 ? 次閱讀

決策樹模型是白盒模型的一種,其預(yù)測結(jié)果可以由人來解釋。我們把機(jī)器學(xué)習(xí)模型的這一特性稱為可解釋性,但并不是所有的機(jī)器學(xué)習(xí)模型都具有可解釋性。

作為可解釋性屬性的一部分,特征重要性是一個(gè)衡量每個(gè)輸入特征對模型預(yù)測結(jié)果貢獻(xiàn)的指標(biāo),即某個(gè)特征上的微小變化如何改變預(yù)測結(jié)果。

直覺

不同于基尼不純度或熵,沒有一個(gè)通用的數(shù)學(xué)公式來定義特征的重要性,而特征的重要性在不同的模型中是不同的。

例如,對于線性回歸模型,假設(shè)所有輸入特征具有相同的尺度(如[0,1],那么每個(gè)特征的特征重要性就是與該特征相關(guān)的權(quán)值的絕對值。從這個(gè)公式可以看出線性回歸模型的f (X) =∑i = 1 n (wixi),模型的結(jié)果是線性正比于每個(gè)組件(wixi)這是由重量決定的(wi)的組件。

對于決策樹,為了度量特征的重要性,我們需要研究模型,看看每個(gè)特征是如何在模型的最終“決策”中發(fā)揮作用的。從前面的文章中我們了解到,在決策樹模型中,在每個(gè)決策節(jié)點(diǎn)上,我們選擇最佳的特征進(jìn)行分割,以便進(jìn)一步區(qū)分到達(dá)該決策節(jié)點(diǎn)的樣本。在每一次分割中,我們都更接近最終的決定(即葉節(jié)點(diǎn))。因此,我們可以說,在每個(gè)決策節(jié)點(diǎn)上,所選擇的分割特征決定了最終的預(yù)測結(jié)果。直觀地說,我們也可以說,那些被選擇的特征比那些實(shí)際上在決策過程中沒有作用的非被選擇的特征更重要?,F(xiàn)在,剩下的問題是我們?nèi)绾瘟炕睾饬窟@種重要性。

有人可能還記得,我們使用信息增益或基尼系數(shù)來衡量分割的質(zhì)量。當(dāng)然,還可以將增益與所選擇的特性關(guān)聯(lián)起來,并使用增益來量化該特性在這個(gè)特定的分裂發(fā)生時(shí)的貢獻(xiàn)。此外,我們可以累積決策樹中出現(xiàn)的每個(gè)特征的增益。

最后,每個(gè)特征的累積增益可以作為決策樹模型的特征重要性。

另一方面,作為一個(gè)可能會注意到,這一決定節(jié)點(diǎn)不是同樣重要的是,自從決定節(jié)點(diǎn)樹的根可以幫助過濾所有的輸入樣本,而決定節(jié)點(diǎn)樹的底部有助于區(qū)分總樣本的只有少數(shù)。因此,一個(gè)特征在每個(gè)決策節(jié)點(diǎn)獲得的增益的權(quán)重并不相同,即一個(gè)特征在一個(gè)決策節(jié)點(diǎn)獲得的增益應(yīng)按該決策節(jié)點(diǎn)幫助區(qū)分的樣本比例進(jìn)行加權(quán)。

基于上述直覺,我們可以推導(dǎo)出以下公式來計(jì)算決策樹中每個(gè)特征的重要性I:

詳談機(jī)器學(xué)習(xí)的決策樹模型

注:我們可以用上述公式中的信息增益來代替基尼系數(shù)增益度量,只要我們對所有特征都使用相同的度量。

通過上面的公式,我們可以得到一個(gè)值來衡量決策樹中每個(gè)特征的重要性。有時(shí),可能需要對值進(jìn)行規(guī)范化,以便更直觀地比較這些值,即將所有值縮放到(0,1)的范圍內(nèi)。例如,如果有兩個(gè)特征經(jīng)過歸一化后得分相同(即0.5),我們可以說它們在決策樹中同等重要。

舉個(gè)例子

讓我們看一個(gè)具體的例子,看看我們?nèi)绾螒?yīng)用上面的公式來計(jì)算決策樹中的特征重要性。首先,我們在下圖中展示了一個(gè)實(shí)例決策樹。

詳談機(jī)器學(xué)習(xí)的決策樹模型

從圖中可以看出,該樹中共有3個(gè)決策節(jié)點(diǎn)。在每個(gè)決策節(jié)點(diǎn)中,我們指出了三條信息:

1、選擇要分割的特性。

2、特征獲得的基尼系數(shù)

3、分別分配給左子節(jié)點(diǎn)和右子節(jié)點(diǎn)的樣本數(shù)量。

此外,我們可以看出決策樹總共訓(xùn)練了100個(gè)樣本。

因此,我們可以計(jì)算出樹中涉及的兩個(gè)特征的特征重要性如下:

詳談機(jī)器學(xué)習(xí)的決策樹模型

進(jìn)一步,我們可以得到歸一化特征重要性如下:

詳談機(jī)器學(xué)習(xí)的決策樹模型

后記:路漫漫其修遠(yuǎn)兮,吾將上下而求索!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8428

    瀏覽量

    132840
  • 決策樹
    +關(guān)注

    關(guān)注

    3

    文章

    96

    瀏覽量

    13567
  • 白盒測試
    +關(guān)注

    關(guān)注

    1

    文章

    14

    瀏覽量

    10628
收藏 人收藏

    評論

    相關(guān)推薦

    《具身智能機(jī)器人系統(tǒng)》第7-9章閱讀心得之具身智能機(jī)器人與大模型

    醫(yī)療領(lǐng)域,手術(shù)輔助機(jī)器人需要毫米級的精確控制,書中有介紹基于視覺伺服的實(shí)時(shí)控制算法,以及如何利用大模型優(yōu)化手術(shù)路徑規(guī)劃。工業(yè)場景中,協(xié)作機(jī)器人面臨的主要挑戰(zhàn)是快速適應(yīng)新工藝流程。具身智能通過在線
    發(fā)表于 12-24 15:03

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    來源:Master編程機(jī)器學(xué)習(xí)”最初的研究動機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆]有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能
    的頭像 發(fā)表于 11-16 01:07 ?460次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度學(xué)習(xí)
    的頭像 發(fā)表于 10-23 15:25 ?1033次閱讀

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)在多個(gè)方面存在顯著的區(qū)別。以下是對這些區(qū)別的介紹: 一、模型規(guī)模與復(fù)雜度 AI大模型 :通常包含數(shù)十億甚至數(shù)萬億的參
    的頭像 發(fā)表于 10-23 15:01 ?834次閱讀

    構(gòu)建語音控制機(jī)器人 - 線性模型機(jī)器學(xué)習(xí)

    2024-07-31 |Annabel Ng 在該項(xiàng)目的[上一篇博客文章]中,我介紹了運(yùn)行機(jī)器人電機(jī)、處理音頻信號和調(diào)節(jié)電壓所需的電路的基礎(chǔ)知識。然而,機(jī)器人還沒有完全完成!盡管機(jī)器人可以正確移動
    的頭像 發(fā)表于 10-02 16:31 ?238次閱讀
    構(gòu)建語音控制<b class='flag-5'>機(jī)器</b>人 - 線性<b class='flag-5'>模型</b>和<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識學(xué)習(xí)

    今天來學(xué)習(xí)大語言模型在自然語言理解方面的原理以及問答回復(fù)實(shí)現(xiàn)。 主要是基于深度學(xué)習(xí)和自然語言處理技術(shù)。 大語言模型涉及以下幾個(gè)過程: 數(shù)據(jù)收集:大語言
    發(fā)表于 08-02 11:03

    pycharm如何訓(xùn)練機(jī)器學(xué)習(xí)模型

    PyCharm是一個(gè)流行的Python集成開發(fā)環(huán)境(IDE),它提供了豐富的功能,包括代碼編輯、調(diào)試、測試等。在本文中,我們將介紹如何在PyCharm中訓(xùn)練機(jī)器學(xué)習(xí)模型。 一、安裝PyCharm
    的頭像 發(fā)表于 07-11 10:14 ?866次閱讀

    Al大模型機(jī)器

    豐富的知識儲備。它們可以涵蓋各種領(lǐng)域的知識,并能夠回答相關(guān)問題。靈活性與通用性: AI大模型機(jī)器人具有很強(qiáng)的靈活性和通用性,能夠處理各種類型的任務(wù)和問題。持續(xù)學(xué)習(xí)和改進(jìn): 這些模型可以
    發(fā)表于 07-05 08:52

    人工神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)機(jī)器學(xué)習(xí)模型的區(qū)別

    人工神經(jīng)網(wǎng)絡(luò)(ANN)與傳統(tǒng)機(jī)器學(xué)習(xí)模型之間的不同,包括其原理、數(shù)據(jù)處理能力、學(xué)習(xí)方法、適用場景及未來發(fā)展趨勢等方面,以期為讀者提供一個(gè)全面的視角。
    的頭像 發(fā)表于 07-04 14:08 ?1446次閱讀

    深度學(xué)習(xí)中的模型權(quán)重

    在深度學(xué)習(xí)這一充滿無限可能性的領(lǐng)域中,模型權(quán)重(Weights)作為其核心組成部分,扮演著至關(guān)重要的角色。它們不僅是模型學(xué)習(xí)的基石,更是模型
    的頭像 發(fā)表于 07-04 11:49 ?1592次閱讀

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個(gè)重要分支,其目標(biāo)是通過讓計(jì)算機(jī)自動從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無需進(jìn)行明確的編程。本文將深入解讀幾種常見的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?1213次閱讀

    名單公布!【書籍評測活動NO.35】如何用「時(shí)間序列與機(jī)器學(xué)習(xí)」解鎖未來?

    設(shè)備的運(yùn)行狀況,生成各種維度的報(bào)告。 同時(shí),通過大數(shù)據(jù)分析和機(jī)器學(xué)習(xí)技術(shù),可以對業(yè)務(wù)進(jìn)行預(yù)測和預(yù)警,從而協(xié)助社會和企業(yè)進(jìn)行科學(xué)決策、降低成本并創(chuàng)造新的價(jià)值。 當(dāng)今時(shí)代,數(shù)據(jù)無處不在,而時(shí)間序列數(shù)據(jù)更是
    發(fā)表于 06-25 15:00

    【大語言模型:原理與工程實(shí)踐】大語言模型的應(yīng)用

    ,它通過抽象思考和邏輯推理,協(xié)助我們應(yīng)對復(fù)雜的決策。 相應(yīng)地,我們設(shè)計(jì)了兩類任務(wù)來檢驗(yàn)大語言模型的能力。一類是感性的、無需理性能力的任務(wù),類似于人類的系統(tǒng)1,如情感分析和抽取式問答等。大語言模型在這
    發(fā)表于 05-07 17:21

    機(jī)器學(xué)習(xí)怎么進(jìn)入人工智能

    ,人工智能已成為一個(gè)熱門領(lǐng)域,涉及到多個(gè)行業(yè)和領(lǐng)域,例如語音識別、機(jī)器翻譯、圖像識別等。 在編程中進(jìn)行人工智能的關(guān)鍵是使用機(jī)器學(xué)習(xí)算法,這是一類基于樣本數(shù)據(jù)和模型訓(xùn)練來進(jìn)行預(yù)測和判斷的
    的頭像 發(fā)表于 04-04 08:41 ?354次閱讀

    什么是隨機(jī)森林?隨機(jī)森林的工作原理

    隨機(jī)森林使用名為“bagging”的技術(shù),通過數(shù)據(jù)集和特征的隨機(jī)自助抽樣樣本并行構(gòu)建完整的決策樹。雖然決策樹基于一組固定的特征,而且經(jīng)常過擬合,但隨機(jī)性對森林的成功至關(guān)重要。
    發(fā)表于 03-18 14:27 ?3658次閱讀
    什么是隨機(jī)森林?隨機(jī)森林的工作原理