在我們今天看來,晶體管發(fā)明以后,集成電路的出現(xiàn)一直到今天超大規(guī)模集成電路的出現(xiàn),似乎是一件水到渠成的事情。但是如果回到半導(dǎo)體產(chǎn)業(yè)初興的歷史現(xiàn)場,我們就會發(fā)現(xiàn)沒有任何一項關(guān)鍵技術(shù)的突破是“必然產(chǎn)生”的。
(硅晶圓上的集成電路和電子元器件)
光刻技術(shù),正是半導(dǎo)體芯片得以出現(xiàn)的關(guān)鍵技術(shù)之一,也仍然是今天芯片的核心制造工藝,光刻機(jī)更是被譽(yù)為半導(dǎo)體產(chǎn)業(yè)皇冠上的明珠。
在試圖探討我國如何實現(xiàn)半導(dǎo)體產(chǎn)業(yè)突圍的當(dāng)下,光刻技術(shù)和光刻機(jī)始終是我們無法回避的技術(shù)隱痛,也是我們必須跨越的技術(shù)高峰。
不過,高端光刻機(jī)所涉及的技術(shù)種類之多、技術(shù)難度之高、產(chǎn)業(yè)鏈之復(fù)雜,遠(yuǎn)超外行人的想象。在半導(dǎo)體產(chǎn)業(yè)七十多年的進(jìn)程中,正是光刻技術(shù)的不斷改進(jìn)推動了芯片結(jié)構(gòu)的迭代升級,同時光刻技術(shù)以及相伴而生的光刻機(jī)、光源、光學(xué)元件、光刻膠等材料設(shè)備,也形成了極高的技術(shù)壁壘和錯綜復(fù)雜的產(chǎn)業(yè)版圖。
我們首先將回到光刻技術(shù)誕生的歷史現(xiàn)場進(jìn)行還原,也會深入到光刻技術(shù)的演進(jìn)歷程,以及光刻機(jī)產(chǎn)業(yè)的競爭版圖中,讓我們獲得對于光刻技術(shù)的全局視野,從而也能更好理解當(dāng)下我們所處的半導(dǎo)體光刻機(jī)產(chǎn)業(yè)的競爭格局。
為硅晶體拍照,光刻技術(shù)的閃亮登場
從晶體管的發(fā)明到集成電路的出現(xiàn),這中間還有一個巨大的跨越,那就是如何將大量的電子器件微型化,以集成在一小片電路上。完成這一跨越,全世界最聰明的電子工程師們又花了十年時間,這十年也成為電子技術(shù)史上面的第一個關(guān)鍵時期。
20 世紀(jì) 50 年代,在芯片出現(xiàn)之前,電子器件的連接幾乎都要依賴手工完成。當(dāng)時美國海軍的一艘航空母艦有 35 萬個電子設(shè)備,需要上千萬個焊接點。這樣的工程量使得電子設(shè)備的生產(chǎn)效率嚴(yán)重低下,電路的成品率也完全依賴操作人員的熟練度和準(zhǔn)確度。
電子產(chǎn)業(yè)界都在呼喚微型化集成電路,也就是芯片的出現(xiàn),而制作芯片的工藝正在貝爾實驗室中醞釀。
從 1950 年起,貝爾實驗室的幾位化學(xué)家陸續(xù)完成了鍺晶體和硅晶體的提純。到 1995 年初,亨利·索羅制造出了雜質(zhì)濃度小于千分之一的硅晶體。
與此同時,化學(xué)家卡爾文·富勒領(lǐng)導(dǎo)的小組研發(fā)出高溫下鍺晶體的雜質(zhì)擴(kuò)散工藝,可以通過精準(zhǔn)地控制雜質(zhì)進(jìn)入鍺晶體的深度和數(shù)量,制造出 PN 結(jié)。1955 年,富勒研究小組已經(jīng)把擴(kuò)散技術(shù)應(yīng)用在硅晶體上面,通過擴(kuò)散技術(shù)將兩種雜質(zhì)注入硅片上,形成 NPN 結(jié)構(gòu)。擴(kuò)散技術(shù)至今仍然是晶體管制造的基礎(chǔ)。
(貝爾實驗室以擴(kuò)散技術(shù)制造的第一個硅基晶體三極管)
同時在貝爾實驗室工作的卡爾·弗洛希和林肯·德里克為擴(kuò)散技術(shù)提出了一種全新的方式,那就是在硅片表明生成一層氧化膜,在其上蝕刻出窗口圖形,從而使得雜質(zhì)只能從窗口擴(kuò)散到硅襯底中,而覆蓋氧化膜的地方則被保護(hù)了起來。
在這些基礎(chǔ)工藝實現(xiàn)之后,光刻技術(shù)的出現(xiàn)也呼之欲出。1955 年,貝爾實驗室的朱爾斯·安德魯斯和沃爾特·邦德開始合作,將于制造印刷電路的光刻技術(shù)用于硅片加工。其方法就是在二氧化硅的氧化膜上均勻涂抹一層“光致抗蝕劑”(也就是光刻膠),隨即通過光學(xué)掩模的方式將窗口圖形暴露在這一圖層上,形成精準(zhǔn)的窗口區(qū)域。然后再通過化學(xué)蝕刻將這一“窗口”形成,同時除去未曝光的“光致抗蝕劑”。最后再將所需雜質(zhì)通過這些“窗口”擴(kuò)散到下面的硅襯底中,形成半導(dǎo)體器件所需要的 P 型和 N 型結(jié)構(gòu),從而構(gòu)成更精準(zhǔn)、更復(fù)雜的半導(dǎo)體器件。
簡言之,光刻技術(shù)的實質(zhì)就是將芯片所需要的電子線路和功能區(qū)制造出來。光刻機(jī)將光源通過掩模,對涂了光刻膠的硅晶圓進(jìn)行曝光,曝光后的光刻膠發(fā)生變化,也就“復(fù)印”了掩模上面的圖形,最終也就使得晶圓上面產(chǎn)生了電子線路圖。
純化技術(shù)、擴(kuò)散技術(shù)、氧化層掩膜技術(shù)以及光刻技術(shù),這些制造工藝技術(shù)填平了從晶體管分立器件到集成電子線路的巨大鴻溝。
不久之后,德州儀器的基爾比和仙童半導(dǎo)體的諾伊斯,就將這些來自貝爾實驗室的半導(dǎo)體制造工藝應(yīng)用在了集成電路的制造上面,開啟了半導(dǎo)體產(chǎn)業(yè)的騰飛之路。
光刻技術(shù)的“摩爾定律”升級賽
有趣的是,光刻技術(shù)的發(fā)展還有一條支線。就在貝爾實驗室取得半導(dǎo)體技術(shù)進(jìn)展的同時,當(dāng)時為美國國防部研究固態(tài)電路微型化的兩位工程師杰伊 . 萊斯羅普和詹姆斯 . 納爾,早已在 1952 年開始使用光刻膠來制作鍺晶體管。1957 年,兩人在貝爾實驗室研究成果的基礎(chǔ)上進(jìn)一步推進(jìn)了光刻技術(shù),制成了小型化的晶體管和陶瓷的混合電路,并創(chuàng)造了“光刻”(Photolithography)一詞。
(萊斯羅普和納爾申請的光刻專利)
1958 年,仙童半導(dǎo)體的霍尼發(fā)明了平面工藝,解決了晶體管的絕緣和連線問題,同時拉斯特和諾伊斯造出了世界上第一臺光刻照相機(jī),用于硅基晶體三極管的制造。1959 年,仙童半導(dǎo)體研制世界第一個單結(jié)構(gòu)硅晶片。1963 年,研制出 CMOS 制造工藝,成為今天 IC 產(chǎn)業(yè)的主流制造工藝。
六十年代初,光刻技術(shù)還非常初級,當(dāng)時掩模板是一比一貼在晶圓上,而晶圓的大小也只有 1 英寸。因為原理并不復(fù)雜,就如同照相一樣,半導(dǎo)體公司還能自己設(shè)計相關(guān)光刻工具和裝備,但很快專業(yè)的光刻機(jī)出現(xiàn),隨即成為了芯片制造的關(guān)鍵設(shè)備之一。
也就在 1965 年,英特爾創(chuàng)始人,時任仙童半導(dǎo)體實驗室主任的戈登·摩爾通過觀察發(fā)現(xiàn)每代芯片幾乎都是前一代芯片容量的兩倍,以此提出了推動半導(dǎo)體技術(shù)持續(xù)升級的“摩爾定律”。當(dāng)時的版本是,集成電路芯片上可容納的元器件數(shù)目,在價格不變的基礎(chǔ)上每年翻一番。1975 年,他又改為每兩年翻一番。
(摩爾定律的推進(jìn)路線)
而摩爾定律實現(xiàn)的關(guān)鍵正是光刻技術(shù)。隨著集成電路元器件尺寸不斷縮小,而芯片集成度和運算速度的不斷提高,對光刻技術(shù)的分辨率要求也越來越高。最終摩爾定律的實現(xiàn)正是同這一光學(xué)分辨率息息相關(guān),而光學(xué)分辨率則是由一個瑞利公式?jīng)Q定:
CD=K1*λ/NA
其中,CD 為曝光關(guān)鍵尺寸,K1 為工藝常數(shù),λ為光波長,NA 為投影物鏡的光學(xué)數(shù)值孔徑。CD 值越低,代表分辨率越高,也就是,光刻技術(shù)只有每兩年把 CD 降低 30%~50%,摩爾定律才能得以應(yīng)驗。
所以,提高光學(xué)分辨率的方法有三種,降低 K1 值,提高數(shù)值孔徑 NA,降低波長λ。在現(xiàn)實的技術(shù)工藝中,K1 值和 NA 值的改進(jìn)有限,而降低曝光光源的波長λ成為光刻技術(shù)持續(xù)推動的趨勢。
從六十年代開始,半導(dǎo)體曝光光源經(jīng)歷了可見光、八十年代的 436 納米、365 納米近紫外波段的高壓汞燈光源,再到九十年代的 248 納米深紫外波段的準(zhǔn)分子 KrF 激光。一直到九十年代末的 193 納米 ArF 準(zhǔn)分子激光,也就是今天主流電腦主機(jī)芯片制造還在使用的 DUV 激光光源。
正是 193 納米波長,成為決定今天光刻機(jī)產(chǎn)業(yè)格局的分水嶺。
面對當(dāng)時如何突破 193 納米波長的難題,科學(xué)界和光刻機(jī)產(chǎn)業(yè)界都在尋求超越它的方案。當(dāng)時美國的 SVG、日本的尼康,基于前一代的干式光刻法,選擇了看起來更穩(wěn)妥的 157 納米的 F2 激光,美國能源部和英特爾發(fā)起,聯(lián)合摩托羅拉、AMD 等組建了 EUV LLC,主攻過于超前的 13.5 納米的 EUV 極紫外光光源,此外還有更小眾的 EPL、離子光刻等。不過當(dāng)時這些嘗試都失敗了。
有趣的是,來自臺積電的工程師林本堅,在 2002 年提出了一種基于 193 納米波長,但改變干式光刻為浸潤式光刻工藝,也就是在光刻膠上方加上一層薄薄的水,來把 193 納米波長折射成 134 納米,一下子突破了 157 納米的難關(guān)。此后浸潤式光刻技術(shù)經(jīng)過多次的工藝改進(jìn),更是做到了 22 納米制程。
(ASML 的第一臺浸潤式光刻機(jī))
而最早選擇浸潤式光刻技術(shù)的,就是那個“天選之子”一般的 ASML。最終,在 ASML 和臺積電的通力合作下,率先將 193 納米浸潤式光刻機(jī)生產(chǎn)出來,也正是這一領(lǐng)先尼康三年的新產(chǎn)品,讓 ASML 徹底贏得了光刻機(jī)絕大部分的市場份額。而潰敗的尼康再也沒能拿出更好的光刻機(jī),而只能停留在中低端市場當(dāng)中。
在此之后,光刻機(jī)的高端賽道上只剩下 ASML 和獨步天下的 EUV 光刻機(jī)。而這一段需要我們另辟專題專門去分析。
在光刻技術(shù)的數(shù)十年演進(jìn)過程中,我們其實也能隱約看到一條光刻機(jī)產(chǎn)業(yè)的變遷路徑。
光刻機(jī)產(chǎn)業(yè)殘酷淘汰賽
毋庸置疑,半導(dǎo)體晶體管以及光刻技術(shù)的發(fā)端肇始于貝爾實驗室。那么,在專利制度如此完善的美國,為什么貝爾實驗室及其背后的 AT&T 沒有成為半導(dǎo)體產(chǎn)業(yè)的領(lǐng)軍者,而是在短時間內(nèi)有眾多的美國半導(dǎo)體企業(yè)迅速崛起?
這場技術(shù)革命之所以很快傳遍整個產(chǎn)業(yè)界,源于當(dāng)時 AT&T 面臨反壟斷的壓力,不得不向美國政府表態(tài),將半導(dǎo)體技術(shù)公之于眾。1956 年,貝爾實驗室第三次召開半導(dǎo)體晶體管技術(shù)分享會,正式公布了光刻、擴(kuò)散技術(shù)和氧化層掩膜技術(shù),連同早在 1952 年就出售的晶體管生產(chǎn)技術(shù),直接壯大了德州儀器、IBM、摩托羅拉、索尼等公司的半導(dǎo)體技術(shù),也間接催生了仙童、英特爾、AMD 等后來的半導(dǎo)體巨頭。
而光刻技術(shù)的公布和擴(kuò)散更是引發(fā)了持續(xù)至今的光刻機(jī)產(chǎn)業(yè)的革新和版圖遷移。
最先受益的自然是美國企業(yè)。1961 年,美國 GCA 醫(yī)療技術(shù)公司造出了第一臺光刻機(jī)。七十年代,美國 Kasper 儀器公司、Perkin Elmer 公司先后推出對齊式、投影式光刻產(chǎn)品,占領(lǐng)了市場先機(jī)。1978 年,GCA 又推出了真正意義上第一臺自動化步進(jìn)式光刻機(jī) Stepper,分辨率可以達(dá)到 1 微米,逐漸占據(jù)了市場主導(dǎo)地位。
(1980 年,尼康推出步進(jìn)式光刻機(jī) NSR-1010G)
由于當(dāng)時光刻技術(shù)門檻相對不高,六十年代末,日本的尼康和佳能因為產(chǎn)業(yè)相近,也開始涉足光刻機(jī)產(chǎn)業(yè)。到了八十年代,尼康發(fā)售了自己首臺商用步進(jìn)式光刻機(jī) NSR-1010G,擁有更先進(jìn)的光學(xué)系統(tǒng)和自研的鏡頭,開始從 GCA 手里奪下了 IBM、英特爾、AMD 等一系列大客戶。
直到 1984 年,尼康已經(jīng)可以和 GCA 平起平坐,各自占據(jù) 30%的市場份額。Ultratech、Eaton、P&E、佳能、日立等剩下幾家瓜分剩下的 40%。
(圖中的簡易木板房就是 ASML 最初的辦公地點)
而這一年,未來光刻機(jī)產(chǎn)業(yè)的霸主 ASML(先進(jìn)半導(dǎo)體材料光刻公司),在荷蘭飛利浦公司和一家名叫 ASMI 的小公司合作下成立。成立之初,ASML 只有 31 名員工,并且只能在飛利浦大樓外的簡易木房里辦公。ASML 的崛起還有一段時間,八十年代是日本半導(dǎo)體和光刻機(jī)產(chǎn)業(yè)的“光輝歲月”。
隨著 1986 年半導(dǎo)體市場大滑坡,GAC 的新產(chǎn)品開發(fā)停滯,隨即被收購,再之后因無人接手而關(guān)門。Ultratech 在被管理層收購后停滯不前,P&E 的光刻機(jī)部門也在 1990 年被賣給了 SVG。八十年代末,美國的光刻機(jī)三巨頭隕落,而日本的尼康、佳能占據(jù)了絕大部分市場份額,剛剛起步的 ASML 也只拿到 10%的市場份額。
而到了 90 年代,就是尼康和 ASML 雙雄競爭的時代,不過因為世紀(jì)之初的那一場技術(shù)路線之爭,尼康落敗,ASML 一騎絕塵,一直到今天其光刻機(jī)產(chǎn)業(yè)霸主的地位仍然牢不可破。
總體來看,在光刻技術(shù)發(fā)展的六十年時間里,光刻機(jī)企業(yè)走馬燈似的快速淘汰和轉(zhuǎn)移,其實背后有一個非常現(xiàn)實的矛盾。就是光刻機(jī)作為芯片制造的上游產(chǎn)業(yè),銷售市場非常狹窄,銷量也十分有限,當(dāng)時一家的年銷量也不過幾十臺,但是光刻機(jī)又是一個需要巨額資金持續(xù)投入研發(fā)、持續(xù)更新迭代的高精尖技術(shù),而且隨著芯片制程越小,技術(shù)難度又呈現(xiàn)指數(shù)級增加。
因此,一旦一家企業(yè)出現(xiàn)產(chǎn)品的技術(shù)停滯或斷檔,領(lǐng)先一步的企業(yè)就會拿走少數(shù)幾家半導(dǎo)體廠商的絕大多數(shù)訂單,而落后的企業(yè)也因失去關(guān)鍵營收而無力進(jìn)行光刻機(jī)新品的研發(fā)和生產(chǎn),也就失去贏得競爭的機(jī)會。
簡單來說,光刻機(jī)產(chǎn)業(yè)的邏輯就是贏者通吃,尼康的敗局就是前車之鑒。
我國光刻機(jī)產(chǎn)業(yè)現(xiàn)狀與可能
回到我國的半導(dǎo)體產(chǎn)業(yè)突圍的問題上來,最核心的一項任務(wù)就是實現(xiàn)高端光刻機(jī),特別是 EUV 光刻機(jī)的國產(chǎn)化。
不過,當(dāng)我們了解了光刻技術(shù)的演變和光刻機(jī)產(chǎn)業(yè)遷移過程之后,可能會更冷靜地面對當(dāng)前無比艱難的競爭格局。
首先,我國在入局光刻機(jī)產(chǎn)業(yè)的時間并不短,但是我們在核心技術(shù)和專利上的積累仍然嚴(yán)重不足。專利技術(shù)受制于人成為卡住我國半導(dǎo)體產(chǎn)業(yè)咽喉的巨大隱痛。
(全球光刻機(jī)專利主要申請的公司)
一直以來,日本的尼康、東京電子、佳能都是光刻機(jī)專利的申請大戶。90 年代之后,ASML 的光刻機(jī)專利數(shù)也大幅增加,并且在日本也布局了大量專利。此外在中國臺灣、美國和韓國也有較多的專利布局。相比之下,我國的光刻機(jī)相關(guān)專利申請比例仍然很低,且近幾年也并未有增加的趨勢。基礎(chǔ)技術(shù)壟斷、技術(shù)研發(fā)門檻高,可能成為我國光刻機(jī)行業(yè)難以突破的一大因素。
(芯片中場效應(yīng)管的架構(gòu)發(fā)展)
其次,就在我們意識到要推動半導(dǎo)體產(chǎn)業(yè)自主化的時候,芯片制造的摩爾定律已經(jīng)在逼近極限,其中一大限制因素正是光刻工藝制程已經(jīng)接近理論極限。當(dāng)芯片制程工藝向 5 納米以下演進(jìn)時,如何打破物理的、材料的極限,成為擺在光刻機(jī)和半導(dǎo)體制造企業(yè)面前的現(xiàn)實難題。
另外,為應(yīng)對日益高昂的芯片制造成本,芯片行業(yè)采取的方式就是企業(yè)間的并購重組,到目前最先進(jìn)的芯片生產(chǎn)線只屬于英特爾、臺積電、三星和格羅方德等少數(shù)幾家芯片制造巨頭,他們與原材料和像 ASML 等設(shè)備商構(gòu)成一個“你中有我,我中有你”的壟斷格局。
對于我們國內(nèi)的光刻機(jī)產(chǎn)業(yè)來說,既面臨壁壘森嚴(yán)的技術(shù)專利封鎖,又直接遭遇接近技術(shù)演進(jìn)極限的產(chǎn)業(yè)階段,還要面對處于完全壟斷地位的 ASML 的壓倒性優(yōu)勢,我們此時發(fā)起的技術(shù)挑戰(zhàn),真的注定是一場無比艱難的極限挑戰(zhàn)。
對于關(guān)心半導(dǎo)體產(chǎn)業(yè)突圍的大眾而言,恐怕更加不能心急,期望我國的光刻機(jī)技術(shù)在短短幾年內(nèi)就能追趕甚至超過國外巨頭。我們更應(yīng)該冷靜地認(rèn)清一個現(xiàn)實,光刻機(jī)作為芯片制造中最精密、最復(fù)雜、難度最大、價格最昂貴的設(shè)備,早已不再是一個國家或者少數(shù)幾家企業(yè)可以完成的工程了。
想要研制出最先進(jìn)的光刻機(jī)設(shè)備,必須與全球頂級的光源、光學(xué)、材料以及關(guān)鍵零部件等廠商進(jìn)行合作。即使在美國試圖封禁我國半導(dǎo)體產(chǎn)業(yè)發(fā)展的艱難環(huán)境下,我們也不能放棄與國外這些先進(jìn)技術(shù)企業(yè)交流、合作的機(jī)會。
當(dāng)然,除了依靠商業(yè)合作之外,更重要的是我國的半導(dǎo)體企業(yè)要努力實現(xiàn)在某些技術(shù)領(lǐng)域的技術(shù)突破,只有在掌握“人無我有”的前端技術(shù)的情況下,我們才有足夠的話語權(quán)來與這些高手過招,也才有可能加入到高端光刻機(jī)制造的產(chǎn)業(yè)分工當(dāng)中。
當(dāng)然,令人欣喜的一方面是,我國對光刻機(jī)技術(shù)的自主化有了真正的意識和推動,我國的光刻機(jī)產(chǎn)業(yè)正在實現(xiàn)技術(shù)突破。后面我們將對此有更加詳盡的探討。
參考文獻(xiàn):
1.《芯片改變世界》,“芯片工藝:貝爾實驗室奠定的半導(dǎo)體工藝基礎(chǔ)”,2019 年 10 月。
2.《科學(xué)》,“光刻技術(shù)的歷史與現(xiàn)狀”,2017 年第三期。
審核編輯 黃昊宇
-
芯片
+關(guān)注
關(guān)注
456文章
50919瀏覽量
424582 -
光刻
+關(guān)注
關(guān)注
8文章
322瀏覽量
30202
發(fā)布評論請先 登錄
相關(guān)推薦
評論