0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Si對比SiC MOSFET 改變技術(shù)—是正確的做法

jf_pJlTbmA9 ? 來源:儒卓力 ? 作者:儒卓力 ? 2023-11-29 16:16 ? 次閱讀

作者:儒卓力功率產(chǎn)品銷售經(jīng)理 Hannah Metzner和英飛凌 PSS 部門高級工程師 René Mente

相比基于硅(Si)的MOSFET,基于碳化硅(SiC)的MOSFET器件可實(shí)現(xiàn)更高的效率水平,但有時(shí)難以輕易決定這項(xiàng)技術(shù)是否更好的選擇。本文將闡述需要考慮哪些標(biāo)準(zhǔn)因素。

超過 1000 V 電壓的應(yīng)用通常使用IGBT解決方案。但現(xiàn)在的SiC 器件性能卓越,能夠?qū)崿F(xiàn)快速開關(guān)的單極組件,可替代雙極 IGBT。這些SiC器件可以在較高的電壓下實(shí)施先前僅僅在較低電壓 (<600 V) 下才可行的應(yīng)用。與雙極 IGBT 相比,這些基于 SiC 的 MOSFET 可將功率損耗降低多達(dá) 80%。

wKgZomVdhLOAOpKpAALsessaGnw096.png

英飛凌進(jìn)一步優(yōu)化了 SiC器件的優(yōu)勢特性——通過使用CoolSiC Trench 技術(shù),可以實(shí)現(xiàn)具有極高閾值電壓 (Vth) 和低米勒電容的 MOSFET器件。相比其他 SiC MOSFET ,它們對于不良的寄生導(dǎo)通效應(yīng)更具彈性。除了 1200 V 和 1700 V 型號之外,英飛凌還擴(kuò)展了產(chǎn)品組合,加入了650 V CoolSiC MOSFET,該器件也可用于 230 V 電源應(yīng)用。這些SiC器件具有更高的系統(tǒng)效率和穩(wěn)健性,以及更低的系統(tǒng)成本,適用于電信、服務(wù)器、電動(dòng)汽車充電站和電池組等應(yīng)用。

如果在基于Si的成熟MOSFET技術(shù),和基于 SiC 的較新 MOSFET之間進(jìn)行選擇,需要考慮多種因素。

應(yīng)用效率和功率密度

與Si器件相比,SiC器件的RDSon在工作溫度范圍內(nèi)不易發(fā)生波動(dòng)。使用基于 SiC 的 MOSFET,RDSon 數(shù)值在 25°C到100°C溫度之間僅僅偏移大約 1.13 倍,而使用典型的基于Si MOSFET(例如英飛凌的 CoolMOSTM C7器件)時(shí),RDSon 則會(huì)偏移1.67 倍。這表明針對基于SiC 的 MOSFET器件,工作溫度對于功率損耗的影響要小得多,因而可以采用高得多的工作溫度。因此,基于 SiC 的 MOSFET 非常適合高溫應(yīng)用,或者可以使用較簡單的冷卻解決方案來實(shí)現(xiàn)相同的效率水平。

wKgaomVdhLuARycwAAF8HbSMvy0691.png

圖片來源:儒卓力

與 IGBT 相比,基于 SiC 的 MOSFET 具有較低的電導(dǎo)損耗以及可降低多達(dá) 80% 的開關(guān)損耗。(在使用英飛凌650 V CoolSiC MOSFET的示例中)

驅(qū)動(dòng)器

當(dāng)從Si轉(zhuǎn)換到SiC時(shí),其中一個(gè)問題是選擇合適的驅(qū)動(dòng)器。如果基于Si的 MOSFET 驅(qū)動(dòng)器產(chǎn)生的最高柵極導(dǎo)通電壓不超過15 V,它們通常可以繼續(xù)使用。然而,高達(dá) 18 V柵極導(dǎo)通電壓可以進(jìn)一步顯著降低電阻 RDSon(在 60°C 時(shí)可降低多達(dá) 18%),因此,值得考慮改用其它驅(qū)動(dòng)器。

另外還建議避免在柵極處出現(xiàn)負(fù)電壓,因?yàn)檫@會(huì)導(dǎo)致 VGS(th)發(fā)生偏移,從而使 RDSon 隨著工作時(shí)間延長而增加。在柵極驅(qū)動(dòng)環(huán)路中,源極電感上的電壓降導(dǎo)致高 di/dt,這可能引起負(fù)VGS(off)電平。很高的 dv/dts 帶來了更大的挑戰(zhàn),這是由于半橋配置中第二個(gè)開關(guān)的柵極漏極電容引起的??梢酝ㄟ^降低 dv/dt 來避免這個(gè)問題,但代價(jià)是效率的下降。

限制負(fù)柵極電壓的最佳方法是通過開爾文源極概念使用單獨(dú)的電源和驅(qū)動(dòng)器電路,并集成二極管鉗位。位于開關(guān)的柵極和源極之間的二極管鉗位限制柵極出現(xiàn)負(fù)電壓。

反向恢復(fù)電荷 Qrr

特別針對使用導(dǎo)通體二極管進(jìn)行連續(xù)硬換向的諧振拓?fù)浠蛟O(shè)計(jì),還必須考慮反向恢復(fù)電荷 Qrr。當(dāng)二極管不再導(dǎo)電時(shí),這是必須從集成的體二極管中去除的電荷(存在于所有二極管中)。各組件制造商都做出了巨大的努力,以便盡可能地降低這種電荷。英飛凌的“Fast Diode CoolMOS”系列就是這些努力成果的示例。它們具有更快速的體二極管,與前代產(chǎn)品相比,可以將 Qrr 降低 10 倍。英飛凌的 CoolSiC 系列在這方面取得了進(jìn)步,與最新的 CoolMOS 組件相比,這些SiC MOSFET 實(shí)現(xiàn)了10 倍的性能改進(jìn)。

wKgZomVdhL2AFmsCAAIGTBkvsR0067.png

Trench 技術(shù)極大程度地減少了使用中的功率損耗,并提供了極高的運(yùn)行可靠性。

采用CoolSiC技術(shù),用戶可以開發(fā)具有更少組件和磁性元件及散熱器的系統(tǒng),從而簡化系統(tǒng)設(shè)計(jì),并減低體積和成本。借助Trench 技術(shù),這些組件還保證達(dá)到極低的使用損耗和極高的運(yùn)行可靠性。

功率因數(shù)校正 (PFC)

目前行業(yè)的重點(diǎn)是提高系統(tǒng)效率。為了實(shí)現(xiàn)至少 98% 的效率數(shù)值,業(yè)界針對功率因數(shù)校正 (PFC)付出了很多努力。具備優(yōu)化 Qrr 的 基于SiC MOSFET 有助于實(shí)現(xiàn)這一目標(biāo)。它們可以實(shí)現(xiàn)用于PFC的硬開關(guān)半橋/全橋拓?fù)?。針對CoolMOS 技術(shù),英飛凌先前推薦“三角電流模式(Triangular Current Mode)”方法,但使用 SiC 器件可以實(shí)現(xiàn)具有連續(xù)導(dǎo)通模式的圖騰柱 PFC。

輸出電容 COSS

在硬開關(guān)拓?fù)渲斜仨毾拇鎯?chǔ)的能量 EOSS;對于最新的 CoolMOS型款,這種能量通常較大。然而,與圖騰柱 PFC 的導(dǎo)通損耗相比,它仍然相對較低,因此可以忽略不計(jì),至少初期如此。較低的電容意味著可以從更快的開關(guān)速度中受益,但這也可能引起導(dǎo)通期間的漏極源極電壓過沖 (VDS)。

針對基于Si的 MOSFET,可以通過使用外部柵極電阻加以補(bǔ)償,以降低開關(guān)速率,并且在漏源處實(shí)現(xiàn)所需的 80% 電壓降額。這種解決方案的缺點(diǎn)是增加電流會(huì)導(dǎo)致更多開關(guān)損耗,尤其是在關(guān)斷期間。

在50 V漏源電壓下,基于 SiC 的 MOSFET 的輸出電容要大于可比較的基于 Si 的功率半導(dǎo)體器件,但 COSS/VDS 的關(guān)系更加線性。其結(jié)果是,相比基于 Si 的MOSFET型款,基于 SiC 的 MOSFET 允許在相同的電路中使用較低的外部電阻,而不會(huì)超出最大漏源電壓。這在某些電路拓?fù)渲惺怯欣?,例如?LLC 諧振 DC/DC 轉(zhuǎn)換器中,可以省去額外的柵極電阻器

結(jié)論

盡管SiC技術(shù)擁有諸多優(yōu)勢,但基于Si的 MOSFET不一定會(huì)過時(shí)。部分原因是由于體二極管的閾值電壓要高得多,直接使用基于 SiC 的型款來替換基于 Si 的 MOSFET,將會(huì)導(dǎo)致體二極管的功率損耗增加四倍,基本上抵消了效率增益。如要真正受益于基于 SiC 的 MOSFET 的更高效率,必須在 MOSFET 通道上使用 PFC 的升壓功能,而不是在體二極管上反向使用。還必須優(yōu)化死區(qū)時(shí)間性能,以充分利用基于 SiC 的 MOSFET 的優(yōu)勢。

文章來源:儒卓力

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    147

    文章

    7164

    瀏覽量

    213304
  • IGBT
    +關(guān)注

    關(guān)注

    1267

    文章

    3793

    瀏覽量

    249032
  • SiC
    SiC
    +關(guān)注

    關(guān)注

    29

    文章

    2814

    瀏覽量

    62648
收藏 人收藏

    評論

    相關(guān)推薦

    三菱電機(jī)1200V級SiC MOSFET技術(shù)解析

    1200V級SiC MOSFET是一種能充分發(fā)揮SiC優(yōu)勢的器件,廣泛應(yīng)用于工業(yè)、汽車等領(lǐng)域。目前,1200V級SiC MOSFET被多家器
    的頭像 發(fā)表于 12-04 10:50 ?669次閱讀
    三菱電機(jī)1200V級<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>技術(shù)</b>解析

    SiC MOSFET模塊封裝技術(shù)及驅(qū)動(dòng)設(shè)計(jì)

    碳化硅作為一種寬禁帶半導(dǎo)體材料,比傳統(tǒng)的硅基器件具有更優(yōu)越的性能。碳化硅SiC MOSFET作為一種新型寬禁帶半導(dǎo)體器件,具有導(dǎo)通電阻低,開關(guān)損耗小的特點(diǎn),可降低器件損耗,提升系統(tǒng)效率,更適合應(yīng)用于高頻電路。碳化硅SiC
    的頭像 發(fā)表于 10-16 13:52 ?1235次閱讀
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>模塊封裝<b class='flag-5'>技術(shù)</b>及驅(qū)動(dòng)設(shè)計(jì)

    意法半導(dǎo)體發(fā)布第四代SiC MOSFET技術(shù)

    意法半導(dǎo)體(簡稱ST)近日宣布推出其第四代STPOWER碳化硅(SiCMOSFET技術(shù),標(biāo)志著公司在高效能半導(dǎo)體領(lǐng)域又邁出了重要一步。此次推出的第四代技術(shù),在能效、功率密度和穩(wěn)健性方
    的頭像 發(fā)表于 10-10 18:27 ?689次閱讀

    SiC MOSFETSiC SBD的區(qū)別

    SiC MOSFET(碳化硅金屬氧化物半導(dǎo)體場效應(yīng)晶體管)和SiC SBD(碳化硅肖特基勢壘二極管)是兩種基于碳化硅(SiC)材料的功率半導(dǎo)體器件,它們在電力電子領(lǐng)域具有廣泛的應(yīng)用。盡
    的頭像 發(fā)表于 09-10 15:19 ?1637次閱讀

    使用SiC技術(shù)應(yīng)對能源基礎(chǔ)設(shè)施的挑戰(zhàn)

    本文簡要回顧了與經(jīng)典的硅 (Si) 方案相比,SiC技術(shù)是如何提高效率和可靠性并降低成本的。然后在介紹 onsemi 的幾個(gè)實(shí)際案例之前,先探討了 SiC 的封裝和系統(tǒng)集成選項(xiàng),并展示
    的頭像 發(fā)表于 07-25 09:36 ?370次閱讀
    使用<b class='flag-5'>SiC</b><b class='flag-5'>技術(shù)</b>應(yīng)對能源基礎(chǔ)設(shè)施的挑戰(zhàn)

    一文了解SiC MOS的應(yīng)用

    統(tǒng)中,應(yīng)用碳化硅MOSFET器件替代傳統(tǒng)硅IGBT器件,可以實(shí)現(xiàn)更低的開關(guān)和導(dǎo)通損耗,同時(shí)具有更高的阻斷電壓和雪崩能力,顯著提升系統(tǒng)效率及功率密度,從而降低系統(tǒng)綜合成本。 圖:SiC/Si器件效率
    發(fā)表于 06-19 14:36 ?875次閱讀
    一文了解<b class='flag-5'>SiC</b> MOS的應(yīng)用

    用碳化硅(SiC)重新思考軟開關(guān)效率

    從理論上講,碳化硅(SiC)技術(shù)比硅(Si)具有優(yōu)勢,這使得它看起來可以作為電力電子中現(xiàn)有MOSFET的直接替代品。這在一定程度上是正確的,
    的頭像 發(fā)表于 06-19 11:13 ?644次閱讀
    用碳化硅(<b class='flag-5'>SiC</b>)重新思考軟開關(guān)效率

    碳化硅模塊(SiC模塊/MODULE)大電流下的驅(qū)動(dòng)器研究

    由于碳化硅(SiCMOSFET具有高頻、低損耗、高耐溫特性,在提升新能源汽車逆變器效率和功率密度方面具有巨大優(yōu)勢。對于SiC MOSFET功率模塊,研究大電流下的短路保護(hù)問題、高開關(guān)
    發(fā)表于 05-14 09:57

    如何更好地驅(qū)動(dòng)SiC MOSFET器件?

    IGBT的驅(qū)動(dòng)電壓一般都是15V,而SiC MOSFET的推薦驅(qū)動(dòng)電壓各品牌并不一致,15V、18V、20V都有廠家在用。更高的門極驅(qū)動(dòng)電壓有助于降低器件導(dǎo)通損耗,SiC MOSFET
    的頭像 發(fā)表于 05-13 16:10 ?647次閱讀

    基于NX封裝的低雜感SiC MOSFET模塊設(shè)計(jì)

    功率模塊從硅IGBT技術(shù)過渡到基于SiC MOSFET技術(shù)是不可避免的。然而,從硅IGBT時(shí)代留下來的外形尺寸偏好仍然阻礙著SiC
    的頭像 發(fā)表于 05-08 17:43 ?997次閱讀
    基于NX封裝的低雜感<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>模塊設(shè)計(jì)

    深入對比SiC MOSFET vs Qorvo SiC FET

    眾多終端產(chǎn)品制造商紛紛選擇采用SiC技術(shù)替代硅基工藝,來開發(fā)基于雙極結(jié)型晶體管(BJT)、結(jié)柵場效應(yīng)晶體管(JFET)、金屬氧化物半導(dǎo)體場效應(yīng)晶體管(MOSFET)和絕緣柵雙極晶體管(IGBT)的電源產(chǎn)品。
    發(fā)表于 04-10 12:31 ?1439次閱讀
    深入<b class='flag-5'>對比</b><b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> vs Qorvo <b class='flag-5'>SiC</b> FET

    適用于SiSiC MOSFET的 BiCMOS 低功耗電流模式PWM控制器UCCx8C5x數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《適用于SiSiC MOSFET的 BiCMOS 低功耗電流模式PWM控制器UCCx8C5x數(shù)據(jù)表 .pdf》資料免費(fèi)下載
    發(fā)表于 03-27 10:54 ?0次下載
    適用于<b class='flag-5'>Si</b>和<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>的 BiCMOS 低功耗電流模式PWM控制器UCCx8C5x數(shù)據(jù)表

    水下航行器電機(jī)的SiC MOSFET逆變器設(shè)計(jì)

    利用 SiC 功率器件開關(guān)頻率高、開關(guān)損耗低等優(yōu)點(diǎn), 將 SiC MOSFET 應(yīng)用于水下航行器大功率高速電機(jī)逆變器模塊, 對軟硬件進(jìn)行設(shè)計(jì)。
    發(fā)表于 03-13 14:31 ?341次閱讀
    水下航行器電機(jī)的<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>逆變器設(shè)計(jì)

    在通用PWM發(fā)電機(jī)中,可以用任何型號替換SiC MOSFET嗎?

    在通用PWM發(fā)電機(jī)中,我可以用任何型號替換SiC MOSFET嗎?
    發(fā)表于 03-01 06:34

    SiC MOSFET模塊串?dāng)_應(yīng)用對策

    SiC MOSFET模塊目前廣泛運(yùn)用于新能源汽車逆變器、車載充電、光伏、風(fēng)電、智能電網(wǎng)等領(lǐng)域[2-9] ,展示了新技術(shù)的優(yōu)良特性。
    發(fā)表于 02-19 16:29 ?1236次閱讀
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>模塊串?dāng)_應(yīng)用對策