0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

SiC MOSFET的短溝道效應(yīng)

英飛凌工業(yè)半導(dǎo)體 ? 2023-03-31 10:48 ? 次閱讀

原文標(biāo)題:Practical Aspects and Body Diode Robustness of a 1200 V SiC Trench MOSFET

原文作者:Thomas Basler

原文發(fā)表在 PCIM Europe 2018, 5 – 7 June 2018, Nuremberg

Si IGBT和SiC溝槽MOSFET之間有許多電氣及物理方面的差異,Practical Aspects and Body Diode Robustness of a 1200V SiC Trench MOSFET這篇文章主要分析了在SiC MOSFET中比較明顯的短溝道效應(yīng)、Vth滯回效應(yīng)、短路特性以及體二極管的魯棒性。直接翻譯不免晦澀難懂,不如加入自己的理解,重新梳理一遍,希望能給大家?guī)?lái)更多有價(jià)值的信息。今天我們著重看下第一部分——短溝道效應(yīng)。

Si IGBT/MOSFET與SiC MOSFET,盡管襯底材料不一樣,但是形成柵極氧化層的材料卻是一樣的——都是SiO2。SiC-SiO2界面缺陷大于Si-SiO2界面,界面缺陷會(huì)降低反型層溝道遷移率,進(jìn)而提高溝道電阻。對(duì)于SiC MOSFET,盡管人們花了很多精力來(lái)提高溝道遷移率,但其遷移率仍然遠(yuǎn)遠(yuǎn)低于硅的IGBT/MOSFET。

因此,商用SiC MOSFET會(huì)設(shè)計(jì)成具有相對(duì)較短的反型層溝道,以盡量減少其溝道電阻。對(duì)于1200V的SiC MOSFET來(lái)說(shuō),溝道電阻對(duì)整個(gè)RDS,on的貢獻(xiàn)最大,這與高壓Si MOSFET完全不同。此外,對(duì)于溝槽MOSFET,由于SiC漂移區(qū)厚度較低,基極摻雜較高,因此溝道區(qū)附近的電場(chǎng)強(qiáng)度(特別是在開(kāi)關(guān)期間)比Si MOSFET高。為了保護(hù)柵極氧化物,必須有一個(gè)屏蔽結(jié)構(gòu),這在所有現(xiàn)代SiC MOSFET概念中都可以找到。與硅器件相比,上述效應(yīng)導(dǎo)致了更明顯的漏極勢(shì)壘降低效應(yīng)(DIBL-或短溝道效應(yīng))。DIBL效應(yīng)的原理大家可以在百度搜到,這里就不再贅述了。DIBL效應(yīng)造成的明顯的現(xiàn)象是——隨著漏極-源極電壓VDS的增加,柵-源極閾值電壓VGS(th)會(huì)隨之降低,見(jiàn)圖1。

3ecb45b4-cd44-11ed-ad0d-dac502259ad0.png

Fig.1:不同制造商1200V SiC MOSFET的VGS(th)曲線,Infineon-溝槽,M1-溝槽,M2-平面

DIBL效應(yīng)和柵極電荷

由于上述的DIBL效應(yīng),與IGBT相比,SiC MOSFET的輸出特性看起來(lái)有所不同。在相同VGS條件下,器件的飽和電流隨VDS上升而上升。見(jiàn)圖2。

3ed9faf0-cd44-11ed-ad0d-dac502259ad0.jpg

圖2:45mΩ、1200V SiC溝槽MOSFET在25°C時(shí)不同VGS下的輸出特性曲線。該特性是在短路狀態(tài)下,通過(guò)非常短的脈沖測(cè)量的,并在考慮到測(cè)量期間溫度上升的情況。

硅IGBT通常使用更長(zhǎng)的反型溝道,溝道電阻對(duì)靜態(tài)損耗來(lái)說(shuō)是次要的。阻斷狀態(tài)下的電場(chǎng)較小,因此,DIBL效應(yīng)較低,飽和電流不會(huì)隨DS電壓上升而變化太大。下圖(左)是IGBT的輸出特性曲線,可以看到,線性區(qū)和飽和區(qū)之間的分界點(diǎn)很清楚,曲線進(jìn)入飽和狀態(tài)之后的部分非常平坦,而SiC MOSFET的分界點(diǎn)則沒(méi)那么明顯,即使進(jìn)入飽和狀態(tài),電流曲線仍有一定斜率的上升。

3ee86194-cd44-11ed-ad0d-dac502259ad0.png3efaa3d6-cd44-11ed-ad0d-dac502259ad0.png

典型的IGBT輸出特性曲線(左)與SiC MOSFET輸出特性曲線(右)

由于SiC-MOS器件的VGS(th)隨著漏極電壓的增加而減少,飽和電流ID,sat上升得更明顯,原因可參見(jiàn)以下公式,可以看到,飽和電流與過(guò)驅(qū)動(dòng)電壓(VGS-VGSth)的平方成正比。

3f0b943e-cd44-11ed-ad0d-dac502259ad0.png

其中k為一個(gè)常數(shù)

3f18ab06-cd44-11ed-ad0d-dac502259ad0.png

W-溝道寬度,μn-電子遷移率,Cox–柵氧化層電容,L–溝道長(zhǎng)度

對(duì)系統(tǒng)進(jìn)行短路保護(hù)設(shè)計(jì)必須考慮DIBL的影響。例如,我們需要知道直流母線電壓下的退飽和電流水平。在器件設(shè)計(jì)中,可以通過(guò)更有效的p-屏蔽結(jié)構(gòu)和更長(zhǎng)的溝道來(lái)減少DIBL效應(yīng)。然而,這兩個(gè)參數(shù)也可能導(dǎo)致更高的RDS,on。

DIBL的第二個(gè)效應(yīng)可以通過(guò)圖3中的柵極電荷曲線來(lái)觀察。VDS變化期間的VGS是一個(gè)斜坡,而IGBT的典型柵極電荷曲線,這時(shí)是一個(gè)恒定的VGS值。

3f264cf2-cd44-11ed-ad0d-dac502259ad0.png3f3435e2-cd44-11ed-ad0d-dac502259ad0.png

柵極電荷曲線對(duì)比:IGBT與SiC MOSFET

因此,在計(jì)算重要參數(shù)QGD時(shí),使用斜坡時(shí)間段是不正確的。更合適的方法是將VDS波形與QG特性疊加在同一張圖上,并如圖3所示設(shè)置取值范圍(取10%VDS~97%VDS)。

3f40e9b8-cd44-11ed-ad0d-dac502259ad0.jpg

圖3:英飛凌45mΩ/1200V芯片的柵極電荷特性(藍(lán)色),在800V、20A、25°C、VGS-5V→15V的情況下,開(kāi)通時(shí)測(cè)量,利用VDS(紅色)波形提取QGD

這其實(shí)是在對(duì)測(cè)得的小信號(hào)電容CGD進(jìn)行積分。

3f4e12c8-cd44-11ed-ad0d-dac502259ad0.png

上述方法可得45mΩ器件QGD為13nC。從圖3中還可以提取使VGS達(dá)到閾值水平所需的電荷(QGS,th,約18nC),可以發(fā)現(xiàn)QGD/QGS,th之比小于1。這有助于抑制寄生導(dǎo)通,即在VDS快速變化的情況下,通過(guò)CGD給柵極充電的電荷量,小于使柵極電壓VGS抬升至閾值VGSth的電荷量。

總結(jié)一下,商業(yè)化的SiC MOSFET普遍采用短溝道設(shè)計(jì),用來(lái)降低導(dǎo)通電阻,這使得DIBL(漏致勢(shì)壘降低效應(yīng))比較明顯。SiC MOSFET中的DIBL效應(yīng)首先表現(xiàn)在飽和電流隨VDS上升而上升,其次表現(xiàn)在柵極電荷曲線中的米勒平臺(tái)段呈斜線。從圖中計(jì)算得出SiC的QGD需要將VDS與柵極電荷曲線疊加在一起,通過(guò)限定邊界條件的方式得出。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    147

    文章

    7188

    瀏覽量

    213494
  • SiC
    SiC
    +關(guān)注

    關(guān)注

    29

    文章

    2831

    瀏覽量

    62699
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    溝道二維晶體管中的摻雜誘導(dǎo)輔助隧穿效應(yīng)

    溝道效應(yīng)嚴(yán)重制約了硅基晶體管尺寸的進(jìn)一步縮小,限制了其在先進(jìn)節(jié)點(diǎn)集成電路中的應(yīng)用。開(kāi)發(fā)新材料和新技術(shù)對(duì)于維系摩爾定律的延續(xù)具有重要意義。
    的頭像 發(fā)表于 12-06 11:02 ?269次閱讀
    <b class='flag-5'>短</b><b class='flag-5'>溝道</b>二維晶體管中的摻雜誘導(dǎo)輔助隧穿<b class='flag-5'>效應(yīng)</b>

    P溝道增強(qiáng)型場(chǎng)效應(yīng)管有哪些特點(diǎn)

    P溝道增強(qiáng)型場(chǎng)效應(yīng)管(P-channel Enhancement-Mode Metal-Oxide-Semiconductor Field-Effect Transistor,簡(jiǎn)稱(chēng)P-MOSFET)是一種基于
    的頭像 發(fā)表于 09-23 17:08 ?685次閱讀

    簡(jiǎn)單認(rèn)識(shí)P溝道增強(qiáng)型場(chǎng)效應(yīng)

    P溝道增強(qiáng)型場(chǎng)效應(yīng)管,簡(jiǎn)稱(chēng)P-MOSFET(P-channel Enhancement-Mode Metal-Oxide-Semiconductor Field-Effect Transistor
    的頭像 發(fā)表于 09-23 17:08 ?1022次閱讀

    N溝道增強(qiáng)型MOSFET的優(yōu)缺點(diǎn)

    N溝道增強(qiáng)型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管)作為現(xiàn)代電子技術(shù)中的關(guān)鍵元件,具有一系列獨(dú)特的優(yōu)點(diǎn)和一定的局限性。以下是
    的頭像 發(fā)表于 09-23 17:06 ?697次閱讀

    什么是N溝道場(chǎng)效應(yīng)管和P溝道場(chǎng)效應(yīng)

    場(chǎng)效應(yīng)管(Field Effect Transistor,簡(jiǎn)稱(chēng)FET)是一種通過(guò)改變電場(chǎng)來(lái)控制半導(dǎo)體材料導(dǎo)電性能的電子器件。根據(jù)導(dǎo)電溝道中載流子的類(lèi)型,場(chǎng)效應(yīng)管可以分為N溝道場(chǎng)效應(yīng)管和
    的頭像 發(fā)表于 09-23 16:41 ?1247次閱讀

    請(qǐng)問(wèn)如何測(cè)量N溝道MOSFET好壞?

    N溝道MOSFET管子接在電路中,好多芯片并聯(lián)在一塊,在不拆下的情況如何測(cè)量其好壞?
    發(fā)表于 09-20 06:39

    SiC MOSFETSiC SBD的區(qū)別

    SiC MOSFET(碳化硅金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管)和SiC SBD(碳化硅肖特基勢(shì)壘二極管)是兩種基于碳化硅(SiC)材料的功率半導(dǎo)
    的頭像 發(fā)表于 09-10 15:19 ?1738次閱讀

    場(chǎng)效應(yīng)管N溝道和P溝道怎樣判斷

    場(chǎng)效應(yīng)管(Field-Effect Transistor, FET)的N溝道和P溝道是其兩種主要類(lèi)型,它們?cè)趯?dǎo)電機(jī)制、結(jié)構(gòu)特點(diǎn)、工作原理及應(yīng)用場(chǎng)景上存在顯著差異。要準(zhǔn)確判斷一個(gè)場(chǎng)效應(yīng)
    的頭像 發(fā)表于 08-13 17:08 ?1912次閱讀

    P溝道與N溝道MOSFET的基本概念

    P溝道與N溝道MOSFET作為半導(dǎo)體器件中的關(guān)鍵元件,在電子電路設(shè)計(jì)中扮演著重要角色。它們各自具有獨(dú)特的工作原理、結(jié)構(gòu)特點(diǎn)以及應(yīng)用場(chǎng)景。
    的頭像 發(fā)表于 08-13 17:02 ?2013次閱讀

    如何更好地驅(qū)動(dòng)SiC MOSFET器件?

    IGBT的驅(qū)動(dòng)電壓一般都是15V,而SiC MOSFET的推薦驅(qū)動(dòng)電壓各品牌并不一致,15V、18V、20V都有廠家在用。更高的門(mén)極驅(qū)動(dòng)電壓有助于降低器件導(dǎo)通損耗,SiC MOSFET
    的頭像 發(fā)表于 05-13 16:10 ?660次閱讀

    深入對(duì)比SiC MOSFET vs Qorvo SiC FET

    眾多終端產(chǎn)品制造商紛紛選擇采用SiC技術(shù)替代硅基工藝,來(lái)開(kāi)發(fā)基于雙極結(jié)型晶體管(BJT)、結(jié)柵場(chǎng)效應(yīng)晶體管(JFET)、金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管(MOSFET)和絕緣柵雙極晶體管(
    發(fā)表于 04-10 12:31 ?1443次閱讀
    深入對(duì)比<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> vs Qorvo <b class='flag-5'>SiC</b> FET

    3D-IC中三個(gè)不同層次的3D是什么

    隨著晶體管尺寸的逐步縮小,其特征尺寸也在不斷縮小,當(dāng)特征尺寸到了22nm,平面晶體管由于其柵極對(duì)于溝道的控制能力較弱而出現(xiàn)溝道效應(yīng),逐漸被一種新型的晶體管所取代,即鰭式場(chǎng)效應(yīng)晶體管(
    發(fā)表于 04-02 11:05 ?618次閱讀
    3D-IC中三個(gè)不同層次的3D是什么

    FinFET是什么?22nm以下制程為什么要引入FinFET呢?

    隨著芯片特征尺寸的不斷減小,傳統(tǒng)的平面MOSFET由于溝道效應(yīng)的限制,難以繼續(xù)按摩爾定律縮小尺寸。
    的頭像 發(fā)表于 03-26 10:19 ?3861次閱讀
    FinFET是什么?22nm以下制程為什么要引入FinFET呢?

    一文解析離子注入的溝道效應(yīng)

    什么是溝道效應(yīng)溝道效應(yīng)是指在晶體材料中,注入的離子沿著晶體原子排列較為稀疏的方向穿透得比預(yù)期更深的現(xiàn)象。
    的頭像 發(fā)表于 02-21 10:19 ?3848次閱讀
    一文解析離子注入的<b class='flag-5'>溝道效應(yīng)</b>

    硅雙通道光纖低溫等離子體蝕刻控制與SiGe表面成分調(diào)制

    在過(guò)去的幾年中,MOSFET結(jié)構(gòu)從平面結(jié)構(gòu)改變?yōu)轹捫徒Y(jié)構(gòu)(FinFETs ),這改善了溝道效應(yīng),并導(dǎo)致更高的驅(qū)動(dòng)電流泄漏。然而,隨著柵極長(zhǎng)度減小到小于20nm,進(jìn)一步小型化變得越來(lái)越困難,因?yàn)樗枰浅U啮拰挾?,這導(dǎo)致驅(qū)動(dòng)電
    的頭像 發(fā)表于 01-15 10:26 ?375次閱讀
    硅雙通道光纖低溫等離子體蝕刻控制與SiGe表面成分調(diào)制