當前,“百模大戰(zhàn)”帶來了算力需求的爆發(fā),AI芯片產(chǎn)業(yè)也迎來巨大機遇,“創(chuàng)新架構(gòu)+開源生態(tài)”正在激發(fā)多元AI算力產(chǎn)品百花齊放。面對新的產(chǎn)業(yè)機會,AI算力產(chǎn)業(yè)鏈亟需通過上下游協(xié)作共同把握機遇。
日前,在開放計算中國峰會OCP China Day 2023上,浪潮信息AI&HPC產(chǎn)品線高級產(chǎn)品經(jīng)理Stephen Zhang就《開放加速規(guī)范AI服務(wù)器設(shè)計指南》進行了專題報告演講,分享了AIGC時代的算力需求趨勢與開放加速計算發(fā)展之道。他指出,從系統(tǒng)層面進行產(chǎn)業(yè)鏈協(xié)同創(chuàng)新成為后摩爾定律時代破解AIGC算力挑戰(zhàn)的必經(jīng)之路。當前,開放加速計算生態(tài)已經(jīng)在此方面取得了豐富有益的成果,多元的AI算力產(chǎn)品正在加速落地,促進AI算力產(chǎn)業(yè)蓬勃發(fā)展。
大模型時代的算力需求及趨勢
自ChatGPT發(fā)布以來,大家可以明顯地感受到全社會對于生成式人工智能技術(shù)的廣泛關(guān)注,ChatGPT出圈之后帶來了更多參與者,模型的數(shù)量和模型參數(shù)量不斷激增。據(jù)不完全統(tǒng)計,我們國家的大模型數(shù)量已經(jīng)超過110個,這就帶來了對于AI算力需求的劇增。
針對大模型發(fā)展帶來的嚴峻算力挑戰(zhàn),我們進行了大量的需求分析和趨勢判斷。從AI服務(wù)器算力及功耗隨時間變化的趨勢來看,要解決大模型的算力短缺問題,最直接的方式是提高單機的算力。從2016年到現(xiàn)在,AI服務(wù)器單機算力增長近100倍,功耗從4千瓦增長到12千瓦,下一代AI服務(wù)器的功耗繼續(xù)增長到18千瓦乃至20千瓦以上。AI服務(wù)器的系統(tǒng)架構(gòu)供電、散熱方式,以及數(shù)據(jù)中心基礎(chǔ)設(shè)施建設(shè)模式,將難以滿足未來高功耗AI服務(wù)器的部署需求。
其次,大模型參數(shù)量增長對GPU數(shù)量的需求也隨之增加,需要更大的顯存容量承載。2021年,一個千億規(guī)模的大模型需要3,000 GB顯存容量空間承載,換算過來需要將近40張80G的GPU才能放得下這個模型,包括權(quán)重參數(shù)、梯度數(shù)據(jù)、優(yōu)化值數(shù)據(jù)和激活值數(shù)據(jù)。今天,很多大模型的參數(shù)量已經(jīng)超過了萬億規(guī)模,顯存容量將會達到30,000GB,需要將近400塊80G顯存的GPU才能承載,這意味著需要更大規(guī)模的算力平臺才能進行如此規(guī)模大模型的訓(xùn)練。
更大規(guī)模的平臺會帶來另外一個問題,即卡與卡之間、不同的節(jié)點之間的更多通信,大模型的訓(xùn)練需要融合多種并行策略,對卡間P2P互聯(lián)帶寬以及跨節(jié)點互聯(lián)帶寬提出了更高的要求。
以2457億參數(shù)的“源1.0”大模型訓(xùn)練的工程實踐為例,“源1.0”訓(xùn)練共有1800億Token,顯存容量需求7.4TB,訓(xùn)練過程中融合了張量并行、流水線并行、數(shù)據(jù)并行三種策略。單節(jié)點張量并行通信頻次達到每秒82.4次,節(jié)點內(nèi)通信帶寬最低需求達到194GB/s。計算節(jié)點內(nèi)會開展流水線并行,跨節(jié)點通信帶寬達到26.8GB/s,至少需要300Gbps通信帶寬才能滿足流水線并行訓(xùn)練的帶寬需求。在訓(xùn)練“源1.0”過程中,實際用到兩張200Gbps網(wǎng)卡進行跨節(jié)點通信,數(shù)據(jù)并行通信頻次低但數(shù)據(jù)量大,帶寬需求至少要達到8.8GB/s,單機400Gbps的帶寬可以滿足。
隨著模型參數(shù)量進一步增加以及GPU算力的成倍增加,未來需要更高的互聯(lián)帶寬才能滿足更大規(guī)模模型的訓(xùn)練需求。
開放加速計算 為超大規(guī)模深度神經(jīng)網(wǎng)絡(luò)而生
面向AIGC大模型訓(xùn)練的計算系統(tǒng)需要具備三個主要特征,一是大算力,二是高互聯(lián),三是強擴展,傳統(tǒng)的PCIe CEM形態(tài)的加速卡很難滿足三個特征需求,因此越來越多的芯片廠商都開發(fā)了非PCIe形態(tài)的加速卡。
開放計算組織OCP在2019年發(fā)布了專門面向大模型訓(xùn)練的加速計算系統(tǒng)架構(gòu),核心是UBB和OAM標準,特點是大算力。Mezz扣卡形態(tài)的加速器具備更高的散熱和互聯(lián)能力,可以承載具有更高算力的芯片。同時,它有非常強的跨節(jié)點擴展能力,可以很輕易地擴展到千卡、萬卡級的平臺,支撐大模型的訓(xùn)練。這個架構(gòu)是天然適用于超大規(guī)模深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練的計算架構(gòu)。
但是,在OAM產(chǎn)業(yè)落地過程中,很多廠商所開發(fā)的加速卡依然存在硬件接口不統(tǒng)一、互聯(lián)協(xié)議不統(tǒng)一,同時軟件生態(tài)互不兼容,帶來了新型AI加速卡系統(tǒng)適配周期長、定制投入成本高的落地難題,導(dǎo)致算力供給和算力需求之間的剪刀差不斷加大,行業(yè)亟需更加開放的算力平臺,以及更加多元的算力支撐大模型的訓(xùn)練。
對此,浪潮信息開展了大量工作,包括技術(shù)上的預(yù)研和對產(chǎn)業(yè)生態(tài)的貢獻。2019年開始,浪潮信息牽頭主導(dǎo)了OAM標準的制定,發(fā)布了首款開放加速基板UBB,同時開發(fā)了全球首款開放加速參考系統(tǒng)MX1,并協(xié)同業(yè)界領(lǐng)先的芯片廠商一起完成了OAM形態(tài)加速卡的適配,證明了這條技術(shù)路線的可行性。為了推動符合OAM開放加速規(guī)范的系統(tǒng)產(chǎn)業(yè)化落地,浪潮信息開發(fā)了第一款“ALL IN ONE” OAM服務(wù)器產(chǎn)品,把CPU和OAM加速卡集成到一臺19英寸機箱中,實現(xiàn)數(shù)據(jù)中心級的快速部署,并在眾多客戶的智算中心落地應(yīng)用。
此后,OAM 芯片的算力和功耗在不斷提升,同時數(shù)據(jù)中心對于綠色節(jié)能的要求也越來越高。對此,我們開發(fā)了第一款液冷OAM服務(wù)器,可以實現(xiàn)8顆OAM加速器和兩顆高功耗的CPU的液冷散熱,整個液冷散熱覆蓋率超過90%,基于這款產(chǎn)品構(gòu)建的液冷OAM智算中心解決方案,千卡平臺穩(wěn)定運行狀態(tài)下PUE值小于1.1。而浪潮信息剛剛發(fā)布的新一代的OAM服務(wù)器NF5698G7,基于全PCIe Gen5鏈路,H2D互聯(lián)能力提升4倍,為新一代OAM研發(fā)提供了更加先進的部署平臺。
通過平臺架構(gòu)設(shè)計和算力算法協(xié)同設(shè)計解決能耗問題
僅僅提供算力平臺是不夠的,目前數(shù)據(jù)中心面臨著巨大的能耗挑戰(zhàn),尤其是面向大模型訓(xùn)練的AI服務(wù)器,單機功耗輕易超過6-7千瓦。
一個公式可以快速計算訓(xùn)練一個大模型所需要的整體耗電量(E):分子用6倍模型參數(shù)量和訓(xùn)練過程中所用到的Token數(shù)量表征大模型訓(xùn)練所需要的算力當量,分母用加速卡的數(shù)量還有單張加速卡的算力性能表征智算基礎(chǔ)設(shè)施所能夠提供的整體算力性能,二者相除的結(jié)果代表的是訓(xùn)練大模型所需要的時間,乘以Ecluster指標(大模型訓(xùn)練平臺每日耗電量)即可得到整體耗電量。那么,在選定模型并且有確定卡數(shù)和規(guī)模的情況下,只有通過優(yōu)化單卡算力值,或者降低單個平臺的耗電量,才能優(yōu)化大模型訓(xùn)練所需的整體耗電量。
針對這兩個參數(shù)的優(yōu)化,我們對不同大模型訓(xùn)練平臺網(wǎng)絡(luò)架構(gòu)設(shè)計下,平臺功耗和相應(yīng)的大模型訓(xùn)練整體功耗進行了對比研究。以單機2張網(wǎng)卡(NIC)組網(wǎng)方案和單機8張網(wǎng)卡(NIC)組網(wǎng)方案為例,雖然不同網(wǎng)卡數(shù)量帶來的單機功耗影響并不顯著,然而放到整個計算平臺層面,網(wǎng)卡數(shù)量增加導(dǎo)致交換機數(shù)量增加,總功耗會有顯著差異,8網(wǎng)卡方案總功耗可達2000多千瓦,2網(wǎng)卡方案只有1600多千瓦,2張網(wǎng)卡方案可以節(jié)省功耗18%。
因此,面向?qū)嶋H應(yīng)用需求,通過精細化地計算大模型訓(xùn)練所需要的網(wǎng)絡(luò)帶寬,可以在不影響性能的前提下,顯著地優(yōu)化總功耗?!霸础贝竽P陀?xùn)練過程當中,僅僅使用了兩張200G的IB卡就完成2457億參數(shù)模型的訓(xùn)練,這是我們發(fā)現(xiàn)的第一個優(yōu)化訓(xùn)練平臺總功耗的技術(shù)路徑。
第二,提高單卡算力利用率以實現(xiàn)提效節(jié)能,也是非常重要的一個命題。經(jīng)我們測試,采用算法和算力架構(gòu)協(xié)同設(shè)計的方法,基于算力基礎(chǔ)設(shè)施的技術(shù)特點,深度優(yōu)化模型的參數(shù)結(jié)構(gòu)和訓(xùn)練策略,可以用更短的時間完成同等規(guī)模模型的訓(xùn)練。以GPT-3模型的訓(xùn)練為例,模型訓(xùn)練時間可以從15天優(yōu)化為12天,總耗電量節(jié)省達到33%。
以上兩點可以說明,應(yīng)用導(dǎo)向的架構(gòu)設(shè)計,以及算力和算法的協(xié)同設(shè)計,能夠?qū)崿F(xiàn)更高效的大模型訓(xùn)練,最終加速節(jié)能降碳目標的實現(xiàn)。
綠色開放加速平臺,賦力大模型高效釋放算力
基于上述在開放計算、高效計算的技術(shù)、產(chǎn)品和方法的創(chuàng)新和研究,浪潮信息正在積極構(gòu)建面向生成式AI的綠色開放加速智算平臺。
去年協(xié)同合作伙伴發(fā)布的液冷開放加速智算中心解決方案,首先具有非常高的算力性能;其次,可以實現(xiàn)千芯級大規(guī)模擴展,支撐超千億規(guī)模模型訓(xùn)練;同時,先進液冷技術(shù)使整個平臺的PUE大幅優(yōu)化。
同時,浪潮信息也在積極構(gòu)建全棧開放加速智算能力,除了提供底層的AI計算平臺,上層有AI資源平臺,能夠在資源管理層通過統(tǒng)一接口實現(xiàn)對于30余種多元算力芯片的統(tǒng)一的調(diào)度和管理。再往上是AI算法平臺,提供開源的深度學(xué)習(xí)算法框架、大模型以及開放的數(shù)據(jù)集。在此之上是算力服務(wù),包括算力、模型數(shù)據(jù)、交付、運維等多種服務(wù)模式。最上層是擁有4000多家合作伙伴的元腦生態(tài),浪潮信息和生態(tài)合作伙伴共同開展開放加速計算方案的設(shè)計,并成功地推向產(chǎn)業(yè)落地。
基于開放加速規(guī)范的AI計算平臺目前已經(jīng)適配20多種業(yè)界主流的大模型,包括大家非常熟悉的GPT系列、LLaMA、Chat GLM、“源”,同時還支持多類擴散模型適配。
“助百芯,智千?!?加速多元算力落地
在AIGC技術(shù)和產(chǎn)業(yè)快速發(fā)展過程中,雖然業(yè)界已經(jīng)制定了開放加速計算相關(guān)規(guī)范,但產(chǎn)業(yè)落地還存在一些問題。比如,開放計算系統(tǒng)定制化程度高,規(guī)范覆蓋的領(lǐng)域不足,包括多元算力芯片的系統(tǒng)適配、管理和調(diào)度,以及深度學(xué)習(xí)環(huán)境的部署等等。
在OAM規(guī)范基礎(chǔ)上,日前《開放加速規(guī)范AI服務(wù)器設(shè)計指南》發(fā)布,基于當前AIGC產(chǎn)業(yè)背景下客戶的痛點,定義了開放加速服務(wù)器設(shè)計的原則,包括應(yīng)用導(dǎo)向、多元開放、綠色高效、統(tǒng)籌設(shè)計。同時對服務(wù)器設(shè)計方法進行深化和細化,包括從節(jié)點層到平臺層的多維協(xié)同設(shè)計方案。方案充分考量適配和研發(fā)過程中遇到的問題,進一步細化了節(jié)點到平臺的設(shè)計參數(shù),最終目的是提高多元算力芯片的開發(fā)和適配、部署效率。
由于面向AIGC訓(xùn)練的服務(wù)器具有非常多的高功耗芯片以及高互聯(lián)帶寬設(shè)計,穩(wěn)定性問題嚴峻,需要更加全面的測試保證系統(tǒng)穩(wěn)定性,減少斷點的發(fā)生和對大模型訓(xùn)練效率的影響。因此,《指南》提供了從結(jié)構(gòu)、散熱、壓力、穩(wěn)定性、軟件兼容性等全面系統(tǒng)的測試指導(dǎo)。
最后,多元算力要推向產(chǎn)業(yè)應(yīng)用,最關(guān)鍵的是性能,包括芯片性能、互聯(lián)性能、模型性能以及虛擬化性能?!吨改稀坊谇捌诜e累的Benchmark調(diào)優(yōu)經(jīng)驗,提出了性能測評和調(diào)優(yōu)標準及方法,幫助合作伙伴更快、更好地將他們最新的芯片產(chǎn)品推向應(yīng)用落地,提高算力的可用性。最終目標是推動整個AI算力產(chǎn)業(yè)的創(chuàng)新和發(fā)展,協(xié)同產(chǎn)業(yè)鏈上下游合作伙伴推動整個開放加速生態(tài),共同應(yīng)對AIGC時代的算力挑戰(zhàn)。
審核編輯:彭菁
-
芯片
+關(guān)注
關(guān)注
456文章
50889瀏覽量
424248 -
服務(wù)器
+關(guān)注
關(guān)注
12文章
9205瀏覽量
85548 -
浪潮
+關(guān)注
關(guān)注
1文章
462瀏覽量
23881 -
AI
+關(guān)注
關(guān)注
87文章
30998瀏覽量
269312 -
大模型
+關(guān)注
關(guān)注
2文章
2476瀏覽量
2803
原文標題:開放加速規(guī)范AI服務(wù)器 解決大模型時代的多元AI算力挑戰(zhàn)
文章出處:【微信號:浪潮AIHPC,微信公眾號:浪潮AIHPC】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論