隨著人們對(duì)電動(dòng)汽車 (EV) 和混動(dòng)汽車 (HEV) 的興趣和市場支持不斷增加,汽車制造商為向不斷擴(kuò)大的客戶群提供優(yōu)質(zhì)產(chǎn)品,競爭日益激烈。由于 EV 的電機(jī)需要高千瓦時(shí)電源來驅(qū)動(dòng),傳統(tǒng)的 12 V 電池已讓位于 400-450 V DC 數(shù)量級(jí)的電池組,成為 EV 和 HEV 的主流電池電壓。
市場已經(jīng)在推動(dòng)向更高電壓電池的轉(zhuǎn)變。800 V DC 和更大的電池將變得更占優(yōu)勢,因?yàn)槭褂酶叩碾妷阂馕吨到y(tǒng)可以在更低的電流下運(yùn)行,同時(shí)實(shí)現(xiàn)相同的功率輸出。較低電流的優(yōu)點(diǎn)是損耗較低,需要管理的熱耗散較少,還有利于使用更小的電纜為整個(gè)車輛供電。
不斷發(fā)展的電動(dòng)汽車技術(shù)對(duì)于在全球范圍內(nèi)實(shí)現(xiàn)更可持續(xù)的交通運(yùn)輸至關(guān)重要。到 2024 年底,道路上將有超過 700 萬輛汽車搭載安森美 (onsemi) VE-Trac?功率模塊,僅這些車輛就可以每年減少 2900 萬噸的二氧化碳排放量(見圖 1)。
圖 1.減少車輛搭載安森美 VE-Trac 功率模塊后可減少的二氧化碳排放量
主驅(qū)逆變器
電池的主要負(fù)載是車輛的電機(jī),使用交流電機(jī)的 EV 和 HEV 依賴于主驅(qū)逆變器將直流電池電源轉(zhuǎn)換為交流電(見圖 2)。主驅(qū)逆變器是電動(dòng)汽車的心臟,提供驅(qū)動(dòng)汽車前進(jìn)所需的扭矩和加速度。主驅(qū)逆變器的兩個(gè)主要設(shè)計(jì)考慮因素包括轉(zhuǎn)換效率和峰值功率。
圖 2. 主驅(qū)逆變器將直流電池電源轉(zhuǎn)換為交流電源,提供扭矩和加速度
從 DC 到 AC 的電源轉(zhuǎn)換效率越高,車輛就可以使用更小的電池做更多的事情。更高的效率還意味著系統(tǒng)可以提供更多的功率,并減少需要管理的散熱。
峰值功率決定了車輛的整體性能,特別是車輛的瞬時(shí)扭矩和加速能力。效率(續(xù)航里程)和峰值功率(性能)共同決定了車輛的應(yīng)用和使用場景。
如今,許多 EV 和 HEV 都是基于 IGBT 技術(shù)構(gòu)建的。隨著碳化硅 (SiC) 技術(shù)的問世,更高的效率和性能成為可能。
碳化硅的優(yōu)勢
IGBT 技術(shù)通常為中低檔車輛提供更具成本效益的解決方案,SiC 提供出色的效率和峰值功率,尤其是在較高電壓下,適用于非常重視續(xù)航里程和性能的車輛,系統(tǒng)成本也更加靈活。每個(gè)芯片阻抗更低,可實(shí)現(xiàn)出色的效率和熱優(yōu)化。在這些功能的共同作用下,每英里的電池消耗得以降低。雖然 SiC 的成本高于 IGBT,但在許多應(yīng)用中,這被 SiC 提高的能效所帶來的整車其他方面的成本節(jié)省所抵消。
圖 3 到圖 6比較了 IGBT 效率與 SiC 效率。在圖 3 和圖 4中,NVH820S75L4SPB 是 IGBT 模塊(方形連線圖),而 NVXR17S90M2SPB 是 SiC 模塊(圓形連線圖)。這兩張圖顯示了 IGBT 因開關(guān)頻率和 RMS 負(fù)載電流具有更高的功率損耗。圖 5 和圖 6 顯示,以更高頻率運(yùn)行的 SiC 可實(shí)現(xiàn)出色的效率增益。
圖 3. 8 kHz 開關(guān)頻率時(shí)的功率損耗
圖 4. 15 kHz 開關(guān)頻率時(shí)的功率損耗
圖 5. 8 kHz 時(shí)的效率增益
圖 6. 15 kHz 時(shí)的效率增益
就本質(zhì)而言,當(dāng)前的 IGBT 技術(shù)會(huì)隨著電壓的增加而變得更厚且效率更低,從而導(dǎo)致需要更高的阻斷電壓??梢曰?IGBT 構(gòu)建更高電壓的逆變器,但隨著電動(dòng)汽車的電壓達(dá)到 800 V 及以上,SiC 的效率將大大高于 IGBT。在更高電壓下,SiC 不必像 IGBT 一樣厚也能實(shí)現(xiàn)阻斷電壓。在標(biāo)準(zhǔn)負(fù)載下,IGBT 的效率約為 94%。然而,在較低負(fù)載下,其效率下降至 92%,例如當(dāng)車輛以巡航速度運(yùn)行時(shí)。相比之下,SiC 在標(biāo)準(zhǔn)負(fù)載下可達(dá)到 98%,增益為 4%。SiC 在較低負(fù)載下具有 95% 的效率,增益為 3%。
增加行駛里程:
一個(gè) 100 千瓦時(shí)的電池和基于 IGBT 的逆變器解決方案,可以產(chǎn)生 300 英里的最大行駛里程。使用 SiC ,效率提高 3% 以上,將使車輛的續(xù)航里程增加 9 英里或更多。對(duì)于具有更大電池的車輛,例如長途運(yùn)輸卡車,續(xù)航里程會(huì)更遠(yuǎn)。
更小直徑的布線:
電機(jī)可以用較低的電流驅(qū)動(dòng),因?yàn)榛?SiC 的主驅(qū)逆變器在較高電壓下運(yùn)行效率更高。這樣,就可以使用直徑較小的電纜。貫穿車輛的布線的直徑變小,減少了整體重量,這樣只需更少的電力就能驅(qū)動(dòng)車輛并增加總的行駛里程。此外,更小直徑的布線成本更低,抵消了使用高壓 SiC 主驅(qū)逆變器的成本。
系統(tǒng)尺寸:
SiC 技術(shù)的效率更高,使高壓主驅(qū)逆變器在尺寸上更加緊湊,而不會(huì)影響效率或峰值功率。較小的逆變器使設(shè)計(jì)人員在逆變器的放置方面具有更大的靈活性,并最大限度地增加了車內(nèi)的乘客空間和可用空間。
熱管理:
管理車輛內(nèi)的熱量對(duì)于維持整體系統(tǒng)效率至關(guān)重要?;?SiC 的主驅(qū)逆變器具有更高的熱效率,可產(chǎn)生更低的損耗和更少的散熱。這意味著逆變器在較低的溫度下運(yùn)行,帶來雙重好處:牽引系統(tǒng)可以實(shí)現(xiàn)更高的峰值功率,同時(shí)降低散熱系統(tǒng)整體成本。
VE-Trac 高度集成功率模塊
IGBT 和 SiC 都是主驅(qū)逆變器系統(tǒng)的可行方案。然而,許多因素會(huì)影響整個(gè)牽引系統(tǒng)中主驅(qū)逆變器的效率和性能,沒有一個(gè)簡單的方程式可以確定適合給定應(yīng)用的最佳方法。
通過與安森美合作,工程師可以探索各種選擇。安森美擁有完整的主驅(qū)逆變器解決方案組合,包括 IGBT 和 SiC 技術(shù),因此 OEM 和一級(jí)供應(yīng)商可以為其應(yīng)用找到合適的逆變器半導(dǎo)體解決方案。安森美為 EV 和 HEV 應(yīng)用提供廣泛的牽引逆變器解決方案,VE-Trac 系列就是用于汽車功能電子化的高度集成功率模塊。這些模塊采用創(chuàng)新的封裝、先進(jìn)的散熱技術(shù)并具備出色的可靠性。
安森美旗下的整個(gè) IGBT 和 SiC 主驅(qū)逆變器產(chǎn)品線均采用標(biāo)準(zhǔn)的外殼模塊封裝和外形。通過標(biāo)準(zhǔn)封裝,OEM 可以使用同等的模塊外形,將現(xiàn)有的基于 IGBT 的系統(tǒng)遷移到 SiC。這使 OEM 只需對(duì)逆變器系統(tǒng)設(shè)計(jì)進(jìn)行少量修改,即可在現(xiàn)有應(yīng)用中獲得 SiC 的全部優(yōu)勢。
然而,隨著行業(yè)朝著提高可靠性的方向發(fā)展,安森美也提供壓鑄模封裝 (TMP) 以實(shí)現(xiàn)更出色的可靠性。隨著 OEM 向市場推出新設(shè)計(jì),TMP 可將器件封裝在非常堅(jiān)固的塑封壓鑄模封裝中,提高電動(dòng)汽車在惡劣運(yùn)行環(huán)境中電氣連接的可靠性。安森美提供半橋解決方案。
在封裝選項(xiàng)中,安森美提供先進(jìn)的直接散熱技術(shù)以最大限度地提高導(dǎo)熱性,從而提高系統(tǒng)性能和可靠性。模塊在冷卻劑和 IGBT / SiC 芯片之間具有直接散熱路徑,無需額外的熱元件,例如熱界面材料 (TIM) 或散熱片。對(duì)于需要更多散熱的應(yīng)用,雙面散熱允許冷卻劑在模塊的頂面和底面流動(dòng),以更快地散熱。
可靠性是 EV 和 HEV 的一個(gè)重要因素。通過使用先進(jìn)散熱技術(shù)改進(jìn)散熱并采用剛性封裝來保護(hù)電氣連接,OEM 可以設(shè)計(jì)出能夠在更長距離內(nèi)運(yùn)行而不會(huì)出現(xiàn)主驅(qū)系統(tǒng)故障的電動(dòng)汽車。為了進(jìn)一步提高可靠性,安森美采用壓合式引腳技術(shù)來連接功率模塊和柵極驅(qū)動(dòng)板之間的信號(hào)引腳。壓合式引腳是在其他汽車應(yīng)用中經(jīng)過驗(yàn)證的技術(shù),例如 TPMS 和電機(jī)控制。壓合式引腳可確保穩(wěn)固連接,而且牢固、可靠、無焊料、可重復(fù),且針對(duì)自動(dòng)化和大批量制造進(jìn)行了優(yōu)化。
各種 VE-Trac 模塊還集成了智能 IGBT 芯片,使模塊能夠自我監(jiān)控自身的運(yùn)行狀況,以應(yīng)對(duì)過熱和過流等保護(hù)事件。在片上執(zhí)行自我監(jiān)控而不是通過外部 NTC 熱敏電阻進(jìn)行監(jiān)控,可以使模塊響應(yīng)更快,并最大限度地減少此類事件發(fā)生時(shí)的影響。
圖 7. VE-Trac 系列是高度集成的功率模塊,整合一系列電壓、功率和制造技術(shù),為各種混動(dòng)和電動(dòng)汽車應(yīng)用提供合適的解決方案。
圖 7顯示了 VE-Trac 系列中 OEM 可用的許多選項(xiàng)。采用直接水冷技術(shù)的 VE-Trac Direct 模塊可輕松與壓合式標(biāo)準(zhǔn)外殼模塊封裝相集成,以提高靈活性和可靠性(見圖 8)。借助 IGBT 和 SiC 選項(xiàng),VE-Trac Direct 模塊可提供 100 kW 以上的功率級(jí)可擴(kuò)展性。
圖 8. VE-Trac Direct 模塊可擴(kuò)展到 100 kW 以上且易于集成
VE-Trac Dual 模塊采用緊湊型 TMP 外形尺寸,體積縮小 30%,同時(shí)為需要擴(kuò)展至 300 kW 的空間受限應(yīng)用提供相當(dāng)?shù)妮敵龉β剩ㄒ妶D 9)。VE-Trac 的使用壽命比標(biāo)準(zhǔn)模塊長 3 倍以上,還提供出色的電氣和熱性能、極低的封裝電感 (<7 nH) 和出色的 $/kW 值。集成了智能的 IGBT 片上溫度和電流傳感器,可實(shí)現(xiàn)更嚴(yán)格的容差(± 7°,而基于 NTC 的傳感為 ± 14°)和更快的故障檢測(200 ns,而 DESAT 為 2 μs+)。
圖 9. VE-Trac Dual 模塊采用緊湊型 TMP 外形,提供出色的電氣和熱性能及 $/kW 值。
VE-Trac B2-Direct SiC 模塊采用新技術(shù),提供 SiC 的效率和高峰值功率,含下一代封裝、直接散熱和熱性能技術(shù),可延長整體壽命性能(見圖 10)。其他主要特性包括:通過銀燒結(jié)將芯片連接到 DBC 上、源夾具互連、與 AHPM DSC 的封裝兼容性,以及從中功率到高功率的可擴(kuò)展功率輸出。
圖 10. VE-Trac B2-Direct SiC 模塊通過下一代封裝、直接散熱、和熱性能技術(shù)提供出色的效率和高峰值功率。
-
電動(dòng)汽車
+關(guān)注
關(guān)注
156文章
12107瀏覽量
231445 -
IGBT
+關(guān)注
關(guān)注
1267文章
3799瀏覽量
249194 -
SiC
+關(guān)注
關(guān)注
29文章
2831瀏覽量
62698
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論