0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

關(guān)于STM32串口使用DMA的教程

技術(shù)讓夢(mèng)想更偉大 ? 來源:CSDN技術(shù)社區(qū) ? 作者:Acuity. ? 2022-10-11 10:21 ? 次閱讀

1 前言

直接存儲(chǔ)器訪問(Direct Memory Access),簡(jiǎn)稱DMA。DMA是CPU一個(gè)用于數(shù)據(jù)從一個(gè)地址空間到另一地址空間“搬運(yùn)”(拷貝)的組件,數(shù)據(jù)拷貝過程不需CPU干預(yù),數(shù)據(jù)拷貝結(jié)束則通知CPU處理。

因此,大量數(shù)據(jù)拷貝時(shí),使用DMA可以釋放CPU資源。DMA數(shù)據(jù)拷貝過程,典型的有:

內(nèi)存—>內(nèi)存,內(nèi)存間拷貝

外設(shè)—>內(nèi)存,如uart、spi、i2c等總線接收數(shù)據(jù)過程

內(nèi)存—>外設(shè),如uart、spi、i2c等總線發(fā)送數(shù)據(jù)過程

2 串口有必要使用DMA嗎

串口(uart)是一種低速的串行異步通信,適用于低速通信場(chǎng)景,通常使用的波特率小于或等于115200bps。

對(duì)于小于或者等于115200bps波特率的,而且數(shù)據(jù)量不大的通信場(chǎng)景,一般沒必要使用DMA,或者說使用DMA并未能充分發(fā)揮出DMA的作用。

對(duì)于數(shù)量大,或者波特率提高時(shí),必須使用DMA以釋放CPU資源,因?yàn)楦卟ㄌ芈士赡軒磉@樣的問題:

對(duì)于發(fā)送,使用循環(huán)發(fā)送,可能阻塞線程,需要消耗大量CPU資源“搬運(yùn)”數(shù)據(jù),浪費(fèi)CPU

對(duì)于發(fā)送,使用中斷發(fā)送,不會(huì)阻塞線程,但需浪費(fèi)大量中斷資源,CPU頻繁響應(yīng)中斷;以115200bps波特率,1s傳輸11520字節(jié),大約69us需響應(yīng)一次中斷,如波特率再提高,將消耗更多CPU資源

對(duì)于接收,如仍采用傳統(tǒng)的中斷模式接收,同樣會(huì)因?yàn)轭l繁中斷導(dǎo)致消耗大量CPU資源

因此,高波特率場(chǎng)景下,串口非常有必要使用DMA。

3 實(shí)現(xiàn)方式

c1a21652-48a6-11ed-a3b6-dac502259ad0.png整體設(shè)計(jì)圖

4 STM32串口使用DMA

關(guān)于STM32串口使用DMA,不乏一些開發(fā)板例程及網(wǎng)絡(luò)上一些博主的使用教程。使用步驟、流程、配置基本大同小異,正確性也沒什么毛病,但都是一些基本的Demo例子,作為學(xué)習(xí)過程沒問題;實(shí)際項(xiàng)目使用缺乏嚴(yán)謹(jǐn)性,數(shù)據(jù)量大時(shí)可能導(dǎo)致數(shù)據(jù)異常。

測(cè)試平臺(tái):

STM32F030C8T6

UART1/UART2

DMA1 Channel2—Channel5

ST標(biāo)準(zhǔn)庫(kù)

主頻48MHz(外部12MHz晶振)

c1be79d2-48a6-11ed-a3b6-dac502259ad0.png在這里插入圖片描述

5 串口DMA接收

5.1 基本流程

c1db24ba-48a6-11ed-a3b6-dac502259ad0.png串口接收流程圖

5.2 相關(guān)配置

關(guān)鍵步驟

【1】初始化串口

【2】使能串口DMA接收模式,使能串口空閑中斷

【3】配置DMA參數(shù),使能DMA通道buf半滿(傳輸一半數(shù)據(jù))中斷、buf溢滿(傳輸數(shù)據(jù)完成)中斷

為什么需要使用DMA 通道buf半滿中斷?

很多串口DMA模式接收的教程、例子,基本是使用了“空間中斷”+“DMA傳輸完成中斷”來接收數(shù)據(jù)。

實(shí)質(zhì)上這是存在風(fēng)險(xiǎn)的,當(dāng)DMA傳輸數(shù)據(jù)完成,CPU介入開始拷貝DMA通道buf數(shù)據(jù),如果此時(shí)串口繼續(xù)有數(shù)據(jù)進(jìn)來,DMA繼續(xù)搬運(yùn)數(shù)據(jù)到buf,就有可能將數(shù)據(jù)覆蓋,因?yàn)镈MA數(shù)據(jù)搬運(yùn)是不受CPU控制的,即使你關(guān)閉了CPU中斷。

嚴(yán)謹(jǐn)?shù)淖龇ㄐ枰鲭pbuf,CPU和DMA各自一塊內(nèi)存交替訪問,即是"乒乓緩存” ,處理流程步驟應(yīng)該是這樣:

【1】第一步,DMA先將數(shù)據(jù)搬運(yùn)到buf1,搬運(yùn)完成通知CPU來拷貝buf1數(shù)據(jù)

【2】第二步,DMA將數(shù)據(jù)搬運(yùn)到buf2,與CPU拷貝buf1數(shù)據(jù)不會(huì)沖突

【3】第三步,buf2數(shù)據(jù)搬運(yùn)完成,通知CPU來拷貝buf2數(shù)據(jù)

【4】執(zhí)行完第三步,DMA返回執(zhí)行第一步,一直循環(huán)

c1f5e2dc-48a6-11ed-a3b6-dac502259ad0.png雙緩存DMA數(shù)據(jù)搬運(yùn)過程

STM32F0系列DMA不支持雙緩存(以具體型號(hào)為準(zhǔn))機(jī)制,但提供了一個(gè)buf"半滿中斷"。

即是數(shù)據(jù)搬運(yùn)到buf大小的一半時(shí),可以產(chǎn)生一個(gè)中斷信號(hào)?;谶@個(gè)機(jī)制,我們可以實(shí)現(xiàn)雙緩存功能,只需將buf空間開辟大一點(diǎn)即可。

【1】第一步,DMA將數(shù)據(jù)搬運(yùn)完成buf的前一半時(shí),產(chǎn)生“半滿中斷”,CPU來拷貝buf前半部分?jǐn)?shù)據(jù)

【2】第二步,DMA繼續(xù)將數(shù)據(jù)搬運(yùn)到buf的后半部分,與CPU拷貝buf前半部數(shù)據(jù)不會(huì)沖突

【3】第三步,buf后半部分?jǐn)?shù)據(jù)搬運(yùn)完成,觸發(fā)“溢滿中斷”,CPU來拷貝buf后半部分?jǐn)?shù)據(jù)

【4】執(zhí)行完第三步,DMA返回執(zhí)行第一步,一直循環(huán)

c2126420-48a6-11ed-a3b6-dac502259ad0.png

使用半滿中斷DMA數(shù)據(jù)搬運(yùn)過程

UART2 DMA模式接收配置代碼如下,與其他外設(shè)使用DMA的配置基本一致,留意關(guān)鍵配置:

串口接收,DMA通道工作模式設(shè)為連續(xù)模式

使能DMA通道接收buf半滿中斷、溢滿(傳輸完成)中斷

啟動(dòng)DMA通道前清空相關(guān)狀態(tài)標(biāo)識(shí),防止首次傳輸錯(cuò)亂數(shù)據(jù)

左右滑動(dòng)查看全部代碼>>>

voidbsp_uart2_dmarx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel5);
DMA_Cmd(DMA1_Channel5,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->RDR);/*UART2接收數(shù)據(jù)地址*/
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;/*接收buf*/
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;/*傳輸方向:外設(shè)->內(nèi)存*/
DMA_InitStructure.DMA_BufferSize=mem_size;/*接收buf大小*/
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Circular;/*連續(xù)模式*/
DMA_InitStructure.DMA_Priority=DMA_Priority_VeryHigh;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel5,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel5,DMA_IT_TC|DMA_IT_HT|DMA_IT_TE,ENABLE);/*使能DMA半滿、溢滿、錯(cuò)誤中斷*/
DMA_ClearFlag(DMA1_IT_TC5);/*清除相關(guān)狀態(tài)標(biāo)識(shí)*/
DMA_ClearFlag(DMA1_IT_HT5);
DMA_Cmd(DMA1_Channel5,ENABLE);
}

DMA 錯(cuò)誤中斷“DMA_IT_TE”,一般用于前期調(diào)試使用,用于檢查DMA出現(xiàn)錯(cuò)誤的次數(shù),發(fā)布軟件可以不使能該中斷。

5.3 接收處理

基于上述描述機(jī)制,DMA方式接收串口數(shù)據(jù),有三種中斷場(chǎng)景需要CPU去將buf數(shù)據(jù)拷貝到fifo中,分別是:

DMA通道buf溢滿(傳輸完成)場(chǎng)景

DMA通道buf半滿場(chǎng)景

串口空閑中斷場(chǎng)景

前兩者場(chǎng)景,前面文章已經(jīng)描述。串口空閑中斷指的是,數(shù)據(jù)傳輸完成后,串口監(jiān)測(cè)到一段時(shí)間內(nèi)沒有數(shù)據(jù)進(jìn)來,則觸發(fā)產(chǎn)生的中斷信號(hào)。

5.3 .1 接收數(shù)據(jù)大小

數(shù)據(jù)傳輸過程是隨機(jī)的,數(shù)據(jù)大小也是不定的,存在幾類情況:

數(shù)據(jù)剛好是DMA接收buf的整數(shù)倍,這是理想的狀態(tài)

數(shù)據(jù)量小于DMA接收buf或者小于接收buf的一半,此時(shí)會(huì)觸發(fā)串口空閑中斷

因此,我們需根據(jù)“DMA通道buf大小”、“DMA通道buf剩余空間大小”、“上一次接收的總數(shù)據(jù)大小”來計(jì)算當(dāng)前接收的數(shù)據(jù)大小。

/*獲取DMA通道接收buf剩余空間大小*/
uint16_tDMA_GetCurrDataCounter(DMA_Channel_TypeDef*DMAy_Channelx);

DMA通道buf溢滿場(chǎng)景計(jì)算

接收數(shù)據(jù)大小=DMA通道buf大小-上一次接收的總數(shù)據(jù)大小

DMA通道buf溢滿中斷處理函數(shù):

左右滑動(dòng)查看全部代碼>>>

voiduart_dmarx_done_isr(uint8_tuart_id)
{
uint16_trecv_size;

recv_size=s_uart_dev[uart_id].dmarx_buf_size-s_uart_dev[uart_id].last_dmarx_size;

fifo_write(&s_uart_dev[uart_id].rx_fifo,
(constuint8_t*)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]),recv_size);

s_uart_dev[uart_id].last_dmarx_size=0;
}

DMA通道buf半滿場(chǎng)景計(jì)算

接收數(shù)據(jù)大小=DMA通道接收總數(shù)據(jù)大小-上一次接收的總數(shù)據(jù)大小
DMA通道接收總數(shù)據(jù)大小=DMA通道buf大小-DMA通道buf剩余空間大小

DMA通道buf半滿中斷處理函數(shù):

左右滑動(dòng)查看全部代碼>>>

voiduart_dmarx_half_done_isr(uint8_tuart_id)
{
uint16_trecv_total_size;
uint16_trecv_size;

if(uart_id==0)
{
recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart1_get_dmarx_buf_remain_size();
}
elseif(uart_id==1)
{
recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart2_get_dmarx_buf_remain_size();
}
recv_size=recv_total_size-s_uart_dev[uart_id].last_dmarx_size;

fifo_write(&s_uart_dev[uart_id].rx_fifo,
(constuint8_t*)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]),recv_size);
s_uart_dev[uart_id].last_dmarx_size=recv_total_size;/*記錄接收總數(shù)據(jù)大小*/
}

串口空閑中斷場(chǎng)景計(jì)算

串口空閑中斷場(chǎng)景的接收數(shù)據(jù)計(jì)算與“DMA通道buf半滿場(chǎng)景”計(jì)算方式是一樣的。

串口空閑中斷處理函數(shù):

左右滑動(dòng)查看全部代碼>>>

voiduart_dmarx_idle_isr(uint8_tuart_id)
{
uint16_trecv_total_size;
uint16_trecv_size;

if(uart_id==0)
{
recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart1_get_dmarx_buf_remain_size();
}
elseif(uart_id==1)
{
recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart2_get_dmarx_buf_remain_size();
}
recv_size=recv_total_size-s_uart_dev[uart_id].last_dmarx_size;
s_UartTxRxCount[uart_id*2+1]+=recv_size;
fifo_write(&s_uart_dev[uart_id].rx_fifo,
(constuint8_t*)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]),recv_size);
s_uart_dev[uart_id].last_dmarx_size=recv_total_size;
}

注:串口空閑中斷處理函數(shù),除了將數(shù)據(jù)拷貝到串口接收fifo中,還可以增加特殊處理,如作為串口數(shù)據(jù)傳輸完成標(biāo)識(shí)、不定長(zhǎng)度數(shù)據(jù)處理等等。

5.3.2 接收數(shù)據(jù)偏移地址

將有效數(shù)據(jù)拷貝到fifo中,除了需知道有效數(shù)據(jù)大小外,還需知道數(shù)據(jù)存儲(chǔ)于DMA 接收buf的偏移地址。

有效數(shù)據(jù)偏移地址只需記錄上一次接收的總大小即,可,在DMA通道buf全滿中斷處理函數(shù)將該值清零,因?yàn)橄乱淮螖?shù)據(jù)將從buf的開頭存儲(chǔ)。

在DMA通道buf溢滿中斷處理函數(shù)中將數(shù)據(jù)偏移地址清零:

voiduart_dmarx_done_isr(uint8_tuart_id)
{
/*todo*/
s_uart_dev[uart_id].last_dmarx_size=0;
}

5.4 應(yīng)用讀取串口數(shù)據(jù)方法

經(jīng)過前面的處理步驟,已將串口數(shù)據(jù)拷貝至接收fifo,應(yīng)用程序任務(wù)只需從fifo獲取數(shù)據(jù)進(jìn)行處理。前提是,處理效率必須大于DAM接收搬運(yùn)數(shù)據(jù)的效率,否則導(dǎo)致數(shù)據(jù)丟失或者被覆蓋處理。

6 串口DMA發(fā)送

6.1 基本流程

c22d65fe-48a6-11ed-a3b6-dac502259ad0.png

串口發(fā)送流程圖

6.2 相關(guān)配置

關(guān)鍵步驟

【1】初始化串口

【2】使能串口DMA發(fā)送模式

【3】配置DMA發(fā)送通道,這一步無需在初始化設(shè)置,有數(shù)據(jù)需要發(fā)送時(shí)才配置使能DMA發(fā)送通道

UART2 DMA模式發(fā)送配置代碼如下,與其他外設(shè)使用DMA的配置基本一致,留意關(guān)鍵配置:

串口發(fā)送是,DMA通道工作模式設(shè)為單次模式(正常模式),每次需要發(fā)送數(shù)據(jù)時(shí)重新配置DMA

使能DMA通道傳輸完成中斷,利用該中斷信息處理一些必要的任務(wù),如清空發(fā)送狀態(tài)、啟動(dòng)下一次傳輸

啟動(dòng)DMA通道前清空相關(guān)狀態(tài)標(biāo)識(shí),防止首次傳輸錯(cuò)亂數(shù)據(jù)

左右滑動(dòng)查看全部代碼>>>

voidbsp_uart2_dmatx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel4);
DMA_Cmd(DMA1_Channel4,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->TDR);/*UART2發(fā)送數(shù)據(jù)地址*/
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;/*發(fā)送數(shù)據(jù)buf*/
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralDST;/*傳輸方向:內(nèi)存->外設(shè)*/
DMA_InitStructure.DMA_BufferSize=mem_size;/*發(fā)送數(shù)據(jù)buf大小*/
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Normal;/*單次模式*/
DMA_InitStructure.DMA_Priority=DMA_Priority_High;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel4,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel4,DMA_IT_TC|DMA_IT_TE,ENABLE);/*使能傳輸完成中斷、錯(cuò)誤中斷*/
DMA_ClearFlag(DMA1_IT_TC4);/*清除發(fā)送完成標(biāo)識(shí)*/
DMA_Cmd(DMA1_Channel4,ENABLE);/*啟動(dòng)DMA發(fā)送*/
}

6.3 發(fā)送處理

串口待發(fā)送數(shù)據(jù)存于發(fā)送fifo中,發(fā)送處理函數(shù)需要做的的任務(wù)就是循環(huán)查詢發(fā)送fifo是否存在數(shù)據(jù),如存在則將該數(shù)據(jù)拷貝到DMA發(fā)送buf中,然后啟動(dòng)DMA傳輸。

前提是需要等待上一次DMA傳輸完畢,即是DMA接收到DMA傳輸完成中斷信號(hào)"DMA_IT_TC"。

串口發(fā)送處理函數(shù):

左右滑動(dòng)查看全部代碼>>>

voiduart_poll_dma_tx(uint8_tuart_id)
{
uint16_tsize=0;

if(0x01==s_uart_dev[uart_id].status)
{
return;
}
size=fifo_read(&s_uart_dev[uart_id].tx_fifo,s_uart_dev[uart_id].dmatx_buf,
s_uart_dev[uart_id].dmatx_buf_size);
if(size!=0)
{
s_UartTxRxCount[uart_id*2+0]+=size;
if(uart_id==0)
{
s_uart_dev[uart_id].status=0x01;/*DMA發(fā)送狀態(tài)*/
bsp_uart1_dmatx_config(s_uart_dev[uart_id].dmatx_buf,size);
}
elseif(uart_id==1)
{
s_uart_dev[uart_id].status=0x01;/*DMA發(fā)送狀態(tài),必須在使能DMA傳輸前置位,否則有可能DMA已經(jīng)傳輸并進(jìn)入中斷*/
bsp_uart2_dmatx_config(s_uart_dev[uart_id].dmatx_buf,size);
}
}
}

注意發(fā)送狀態(tài)標(biāo)識(shí),必須先置為“發(fā)送狀態(tài)”,然后啟動(dòng)DMA 傳輸。如果步驟反過來,在傳輸數(shù)據(jù)量少時(shí),DMA傳輸時(shí)間短,“DMA_IT_TC”中斷可能比“發(fā)送狀態(tài)標(biāo)識(shí)置位”先執(zhí)行,導(dǎo)致程序誤判DMA一直處理發(fā)送狀態(tài)(發(fā)送標(biāo)識(shí)無法被清除)。

注:關(guān)于DMA發(fā)送數(shù)據(jù)啟動(dòng)函數(shù),有些博客文章描述只需改變DMA發(fā)送buf的大小即可;經(jīng)過測(cè)試發(fā)現(xiàn),該方法在發(fā)送數(shù)據(jù)量較小時(shí)可行,數(shù)據(jù)量大后,導(dǎo)致發(fā)送失敗,而且不會(huì)觸發(fā)DMA發(fā)送完成中斷。因此,可靠辦法是:每次啟動(dòng)DMA發(fā)送,重新配置DMA通道所有參數(shù)。該步驟只是配置寄存器過程,實(shí)質(zhì)上不會(huì)占用很多CPU執(zhí)行時(shí)間。

DMA傳輸完成中斷處理函數(shù):

voiduart_dmatx_done_isr(uint8_tuart_id)
{
s_uart_dev[uart_id].status=0;/*清空DMA發(fā)送狀態(tài)標(biāo)識(shí)*/
}

上述串口發(fā)送處理函數(shù)可以在幾種情況調(diào)用:

主線程任務(wù)調(diào)用,前提是線程不能被其他任務(wù)阻塞,否則導(dǎo)致fifo溢出

voidthread(void)
{
uart_poll_dma_tx(DEV_UART1);
uart_poll_dma_tx(DEV_UART2);
}

定時(shí)器中斷中調(diào)用

voidTIMx_IRQHandler(void)
{
uart_poll_dma_tx(DEV_UART1);
uart_poll_dma_tx(DEV_UART2);
}

DMA通道傳輸完成中斷中調(diào)用

voidDMA1_Channel4_5_IRQHandler(void)
{
if(DMA_GetITStatus(DMA1_IT_TC4))
{
UartDmaSendDoneIsr(UART_2);
DMA_ClearFlag(DMA1_FLAG_TC4);
uart_poll_dma_tx(DEV_UART2);
}
}

每次拷貝多少數(shù)據(jù)量到DMA發(fā)送buf:

關(guān)于這個(gè)問題,與具體應(yīng)用場(chǎng)景有關(guān),遵循的原則就是:只要發(fā)送fifo的數(shù)據(jù)量大于等于DMA發(fā)送buf的大小,就應(yīng)該填滿DMA發(fā)送buf,然后啟動(dòng)DMA傳輸,這樣才能充分發(fā)揮會(huì)DMA性能。

因此,需兼顧每次DMA傳輸?shù)男屎痛跀?shù)據(jù)流實(shí)時(shí)性,參考著幾類實(shí)現(xiàn):

周期查詢發(fā)送fifo數(shù)據(jù),啟動(dòng)DMA傳輸,充分利用DMA發(fā)送效率,但可能降低串口數(shù)據(jù)流實(shí)時(shí)性

實(shí)時(shí)查詢發(fā)送fifo數(shù)據(jù),加上超時(shí)處理,理想的方法

在DMA傳輸完成中斷中處理,保證實(shí)時(shí)連續(xù)數(shù)據(jù)流

7 串口設(shè)備

7.1 數(shù)據(jù)結(jié)構(gòu)

/*串口設(shè)備數(shù)據(jù)結(jié)構(gòu)*/
typedefstruct
{
uint8_tstatus;/*發(fā)送狀態(tài)*/
_fifo_ttx_fifo;/*發(fā)送fifo*/
_fifo_trx_fifo;/*接收fifo*/
uint8_t*dmarx_buf;/*dma接收緩存*/
uint16_tdmarx_buf_size;/*dma接收緩存大小*/
uint8_t*dmatx_buf;/*dma發(fā)送緩存*/
uint16_tdmatx_buf_size;/*dma發(fā)送緩存大小*/
uint16_tlast_dmarx_size;/*dma上一次接收數(shù)據(jù)大小*/
}uart_device_t;

7.2 對(duì)外接口

左右滑動(dòng)查看全部代碼>>>

/*串口注冊(cè)初始化函數(shù)*/
voiduart_device_init(uint8_tuart_id)
{
if(uart_id==1)
{
/*配置串口2收發(fā)fifo*/
fifo_register(&s_uart_dev[uart_id].tx_fifo,&s_uart2_tx_buf[0],
sizeof(s_uart2_tx_buf),fifo_lock,fifo_unlock);
fifo_register(&s_uart_dev[uart_id].rx_fifo,&s_uart2_rx_buf[0],
sizeof(s_uart2_rx_buf),fifo_lock,fifo_unlock);

/*配置串口2DMA收發(fā)buf*/
s_uart_dev[uart_id].dmarx_buf=&s_uart2_dmarx_buf[0];
s_uart_dev[uart_id].dmarx_buf_size=sizeof(s_uart2_dmarx_buf);
s_uart_dev[uart_id].dmatx_buf=&s_uart2_dmatx_buf[0];
s_uart_dev[uart_id].dmatx_buf_size=sizeof(s_uart2_dmatx_buf);
bsp_uart2_dmarx_config(s_uart_dev[uart_id].dmarx_buf,
sizeof(s_uart2_dmarx_buf));
s_uart_dev[uart_id].status=0;
}
}

/*串口發(fā)送函數(shù)*/
uint16_tuart_write(uint8_tuart_id,constuint8_t*buf,uint16_tsize)
{
returnfifo_write(&s_uart_dev[uart_id].tx_fifo,buf,size);
}

/*串口讀取函數(shù)*/
uint16_tuart_read(uint8_tuart_id,uint8_t*buf,uint16_tsize)
{
returnfifo_read(&s_uart_dev[uart_id].rx_fifo,buf,size);
}

8 相關(guān)文章

依賴的fifo參考該文章:

通用環(huán)形緩沖區(qū)模塊:

https://acuity.blog.csdn.net/article/details/78902689

9 完整源碼

代碼倉(cāng)庫(kù):

https://github.com/Prry/stm32f0-uart-dma

串口&DMA底層配置:

左右滑動(dòng)查看全部代碼>>>

#include
#include
#include
#include"stm32f0xx.h"
#include"bsp_uart.h"

/**
*@brief
*@param
*@retval
*/
staticvoidbsp_uart1_gpio_init(void)
{
GPIO_InitTypeDefGPIO_InitStructure;
#if0
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB,ENABLE);

GPIO_PinAFConfig(GPIOB,GPIO_PinSource6,GPIO_AF_0);
GPIO_PinAFConfig(GPIOB,GPIO_PinSource7,GPIO_AF_0);

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6|GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_Level_3;
GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;
GPIO_Init(GPIOB,&GPIO_InitStructure);
#else
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA,ENABLE);

GPIO_PinAFConfig(GPIOB,GPIO_PinSource9,GPIO_AF_1);
GPIO_PinAFConfig(GPIOB,GPIO_PinSource10,GPIO_AF_1);

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_Level_3;
GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;
GPIO_Init(GPIOA,&GPIO_InitStructure);
#endif
}

/**
*@brief
*@param
*@retval
*/
staticvoidbsp_uart2_gpio_init(void)
{
GPIO_InitTypeDefGPIO_InitStructure;

RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB,ENABLE);

GPIO_PinAFConfig(GPIOA,GPIO_PinSource2,GPIO_AF_1);
GPIO_PinAFConfig(GPIOA,GPIO_PinSource3,GPIO_AF_1);

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_10MHz;
GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;
GPIO_Init(GPIOA,&GPIO_InitStructure);
}

/**
*@brief
*@param
*@retval
*/
voidbsp_uart1_init(void)
{
USART_InitTypeDefUSART_InitStructure;
NVIC_InitTypeDefNVIC_InitStructure;

bsp_uart1_gpio_init();

/*使能串口和DMA時(shí)鐘*/
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);

USART_InitStructure.USART_BaudRate=57600;
USART_InitStructure.USART_WordLength=USART_WordLength_8b;
USART_InitStructure.USART_StopBits=USART_StopBits_1;
USART_InitStructure.USART_Parity=USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;
USART_Init(USART1,&USART_InitStructure);

USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);/*使能空閑中斷*/
USART_OverrunDetectionConfig(USART1,USART_OVRDetection_Disable);

USART_Cmd(USART1,ENABLE);
USART_DMACmd(USART1,USART_DMAReq_Rx|USART_DMAReq_Tx,ENABLE);/*使能DMA收發(fā)*/

/*串口中斷*/
NVIC_InitStructure.NVIC_IRQChannel=USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPriority=2;
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);

/*DMA中斷*/
NVIC_InitStructure.NVIC_IRQChannel=DMA1_Channel2_3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPriority=0;
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);
}

/**
*@brief
*@param
*@retval
*/
voidbsp_uart2_init(void)
{
USART_InitTypeDefUSART_InitStructure;
NVIC_InitTypeDefNVIC_InitStructure;

bsp_uart2_gpio_init();

/*使能串口和DMA時(shí)鐘*/
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE);

USART_InitStructure.USART_BaudRate=57600;
USART_InitStructure.USART_WordLength=USART_WordLength_8b;
USART_InitStructure.USART_StopBits=USART_StopBits_1;
USART_InitStructure.USART_Parity=USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;
USART_Init(USART2,&USART_InitStructure);

USART_ITConfig(USART2,USART_IT_IDLE,ENABLE);/*使能空閑中斷*/
USART_OverrunDetectionConfig(USART2,USART_OVRDetection_Disable);

USART_Cmd(USART2,ENABLE);
USART_DMACmd(USART2,USART_DMAReq_Rx|USART_DMAReq_Tx,ENABLE);/*使能DMA收發(fā)*/

/*串口中斷*/
NVIC_InitStructure.NVIC_IRQChannel=USART2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPriority=2;
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);

/*DMA中斷*/
NVIC_InitStructure.NVIC_IRQChannel=DMA1_Channel4_5_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPriority=0;
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);
}

voidbsp_uart1_dmatx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel2);
DMA_Cmd(DMA1_Channel2,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART1->TDR);
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralDST;/*傳輸方向:內(nèi)存->外設(shè)*/
DMA_InitStructure.DMA_BufferSize=mem_size;
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority=DMA_Priority_High;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel2,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel2,DMA_IT_TC|DMA_IT_TE,ENABLE);
DMA_ClearFlag(DMA1_IT_TC2);/*清除發(fā)送完成標(biāo)識(shí)*/
DMA_Cmd(DMA1_Channel2,ENABLE);
}

voidbsp_uart1_dmarx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel3);
DMA_Cmd(DMA1_Channel3,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART1->RDR);
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;/*傳輸方向:外設(shè)->內(nèi)存*/
DMA_InitStructure.DMA_BufferSize=mem_size;
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority=DMA_Priority_VeryHigh;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel3,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel3,DMA_IT_TC|DMA_IT_HT|DMA_IT_TE,ENABLE);/*使能DMA半滿、全滿、錯(cuò)誤中斷*/
DMA_ClearFlag(DMA1_IT_TC3);
DMA_ClearFlag(DMA1_IT_HT3);
DMA_Cmd(DMA1_Channel3,ENABLE);
}

uint16_tbsp_uart1_get_dmarx_buf_remain_size(void)
{
returnDMA_GetCurrDataCounter(DMA1_Channel3);/*獲取DMA接收buf剩余空間*/
}

voidbsp_uart2_dmatx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel4);
DMA_Cmd(DMA1_Channel4,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->TDR);
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralDST;/*傳輸方向:內(nèi)存->外設(shè)*/
DMA_InitStructure.DMA_BufferSize=mem_size;
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority=DMA_Priority_High;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel4,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel4,DMA_IT_TC|DMA_IT_TE,ENABLE);
DMA_ClearFlag(DMA1_IT_TC4);/*清除發(fā)送完成標(biāo)識(shí)*/
DMA_Cmd(DMA1_Channel4,ENABLE);
}

voidbsp_uart2_dmarx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel5);
DMA_Cmd(DMA1_Channel5,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->RDR);
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;/*傳輸方向:外設(shè)->內(nèi)存*/
DMA_InitStructure.DMA_BufferSize=mem_size;
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority=DMA_Priority_VeryHigh;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel5,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel5,DMA_IT_TC|DMA_IT_HT|DMA_IT_TE,ENABLE);/*使能DMA半滿、全滿、錯(cuò)誤中斷*/
DMA_ClearFlag(DMA1_IT_TC5);
DMA_ClearFlag(DMA1_IT_HT5);
DMA_Cmd(DMA1_Channel5,ENABLE);
}

uint16_tbsp_uart2_get_dmarx_buf_remain_size(void)
{
returnDMA_GetCurrDataCounter(DMA1_Channel5);/*獲取DMA接收buf剩余空間*/
}

壓力測(cè)試:

1.5Mbps波特率,串口助手每毫秒發(fā)送1k字節(jié)數(shù)據(jù),stm32f0 DMA接收數(shù)據(jù),再通過DMA發(fā)送回串口助手,毫無壓力。

1.5Mbps波特率,可傳輸大文件測(cè)試,將接收數(shù)據(jù)保存為文件,與源文件比較。

串口高波特率測(cè)試需要USB轉(zhuǎn)TLL工具及串口助手都支持才可行,推薦CP2102、FT232芯片的USB轉(zhuǎn)TTL工具。

c2451dd4-48a6-11ed-a3b6-dac502259ad0.png

1.5Mbps串口回環(huán)壓力測(cè)試

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 存儲(chǔ)器
    +關(guān)注

    關(guān)注

    38

    文章

    7492

    瀏覽量

    163854
  • 串口
    +關(guān)注

    關(guān)注

    14

    文章

    1554

    瀏覽量

    76532
  • dma
    dma
    +關(guān)注

    關(guān)注

    3

    文章

    561

    瀏覽量

    100593

原文標(biāo)題:9 完整源碼

文章出處:【微信號(hào):技術(shù)讓夢(mèng)想更偉大,微信公眾號(hào):技術(shù)讓夢(mèng)想更偉大】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    求助帖,關(guān)于stm32串口dma方式連續(xù)發(fā)送的問題

    stm32串口使用dma方式發(fā)送,連續(xù)發(fā)多次,只能成功發(fā)送一次,后邊的數(shù)據(jù)沒有發(fā)送出去。每次發(fā)送前都執(zhí)行了USART_DMACmd(USART1, USART_DMAReq_Tx, ENABLE);
    發(fā)表于 12-15 13:49

    怎么實(shí)現(xiàn)STM32串口DMA收發(fā)?

    STM32 DMA具有哪些功能?怎么實(shí)現(xiàn)STM32串口DMA收發(fā)?
    發(fā)表于 12-06 07:27

    STM32串口+DMA怎么使用?

    STM32串口+DMA怎么使用?
    發(fā)表于 12-15 07:19

    stm32串口調(diào)試軟件

    電子發(fā)燒友網(wǎng)站提供《stm32串口調(diào)試軟件.rar》資料免費(fèi)下載
    發(fā)表于 09-06 16:59 ?6次下載

    STM32串口DMA問題詳解

    昨天晚上在STM32串口DMA的問題上糾結(jié)了好長(zhǎng)時(shí)間,所以今天上午寫篇博客來談?wù)勎覍?duì)串口DMA發(fā)送的理解。
    的頭像 發(fā)表于 10-27 16:16 ?8449次閱讀
    <b class='flag-5'>STM32</b><b class='flag-5'>串口</b><b class='flag-5'>DMA</b>問題詳解

    STM32串口中斷 DMA接收的幾點(diǎn)注意地方

    STM32串口中斷、DMA接收的幾點(diǎn)注意地方
    的頭像 發(fā)表于 03-04 13:57 ?2.1w次閱讀

    STM32串口DMA容易忽視的問題資料下載

    電子發(fā)燒友網(wǎng)為你提供STM32串口DMA容易忽視的問題資料下載的電子資料下載,更有其他相關(guān)的電路圖、源代碼、課件教程、中文資料、英文資料、參考設(shè)計(jì)、用戶指南、解決方案等資料,希望可以幫助到廣大的電子工程師們。
    發(fā)表于 04-16 08:54 ?5次下載
    <b class='flag-5'>STM32</b><b class='flag-5'>串口</b><b class='flag-5'>DMA</b>容易忽視的問題資料下載

    STM32串口DMA發(fā)送數(shù)據(jù)

    一、DMA簡(jiǎn)介二、實(shí)驗(yàn)流程了解了DMA之后,我們做一個(gè)實(shí)驗(yàn):STM32采用串口DMA方式,用115200bps或更高速率向上位機(jī)連續(xù)發(fā)送數(shù)據(jù)
    發(fā)表于 12-07 10:36 ?22次下載
    <b class='flag-5'>STM32</b><b class='flag-5'>串口</b><b class='flag-5'>DMA</b>發(fā)送數(shù)據(jù)

    stm32串口代碼詳解

    stm32串口
    發(fā)表于 12-24 18:38 ?52次下載
    <b class='flag-5'>stm32</b><b class='flag-5'>串口</b>代碼詳解

    STM32CUBEMX配置教程(九)STM32串口DMA收發(fā)數(shù)據(jù)

    STM32CUBEMX配置教程(九)STM32串口DMA收發(fā)數(shù)據(jù)基于STM32H743VI使用STM32
    發(fā)表于 12-24 18:47 ?24次下載
    <b class='flag-5'>STM32</b>CUBEMX配置教程(九)<b class='flag-5'>STM32</b><b class='flag-5'>串口</b><b class='flag-5'>DMA</b>收發(fā)數(shù)據(jù)

    STM32F407串口空閑中斷+DMA

    STM32F407串口空閑中斷+DMA空閑中斷,DMA簡(jiǎn)介空閑中斷區(qū)別于普通串口中斷的每一字節(jié)數(shù)據(jù)進(jìn)入一次中斷的中斷方式,空閑中斷在一幀數(shù)據(jù)
    發(fā)表于 12-24 18:50 ?29次下載
    <b class='flag-5'>STM32</b>F407<b class='flag-5'>串口</b>空閑中斷+<b class='flag-5'>DMA</b>

    stm32串口

    DMA發(fā)送緩存區(qū)bsp_usart.cbsp_usart.hisr.c基于stm32f103zet6串口發(fā)送使用DMA發(fā)送大致說明USART_Rx_Sbuffer二維數(shù)組 ->
    發(fā)表于 12-24 18:55 ?20次下載
    <b class='flag-5'>stm32</b><b class='flag-5'>串口</b>

    stm32串口DMA數(shù)據(jù)接收不完整問題說明

    stm32串口DMA數(shù)據(jù)接收不完整問題說明最近做了一個(gè)項(xiàng)目需要用串口來接收模塊端的應(yīng)答數(shù)據(jù),由于使用了實(shí)時(shí)操作系統(tǒng),考慮中斷嵌套或被打斷的問題導(dǎo)致數(shù)據(jù)接收不完整的問題,使用
    發(fā)表于 12-24 19:37 ?21次下載
    <b class='flag-5'>stm32</b><b class='flag-5'>串口</b><b class='flag-5'>DMA</b>數(shù)據(jù)接收不完整問題說明

    一個(gè)嚴(yán)謹(jǐn)?shù)?b class='flag-5'>STM32串口DMA發(fā)送&amp;接收(1.5Mbps波特率)機(jī)制

    一個(gè)嚴(yán)謹(jǐn)?shù)?b class='flag-5'>STM32串口DMA發(fā)送&接收(1.5Mbps波特率)機(jī)制
    的頭像 發(fā)表于 09-18 10:58 ?2312次閱讀
    一個(gè)嚴(yán)謹(jǐn)?shù)?b class='flag-5'>STM32</b><b class='flag-5'>串口</b><b class='flag-5'>DMA</b>發(fā)送&amp;接收(1.5Mbps波特率)機(jī)制

    STM32串口中斷及DMA接收常見的幾個(gè)問題

    STM32串口中斷及DMA接收常見的幾個(gè)問題
    的頭像 發(fā)表于 10-26 16:41 ?3561次閱讀
    <b class='flag-5'>STM32</b><b class='flag-5'>串口</b>中斷及<b class='flag-5'>DMA</b>接收常見的幾個(gè)問題