1 前言
直接存儲(chǔ)器訪問(Direct Memory Access),簡(jiǎn)稱DMA。DMA是CPU一個(gè)用于數(shù)據(jù)從一個(gè)地址空間到另一地址空間“搬運(yùn)”(拷貝)的組件,數(shù)據(jù)拷貝過程不需CPU干預(yù),數(shù)據(jù)拷貝結(jié)束則通知CPU處理。
因此,大量數(shù)據(jù)拷貝時(shí),使用DMA可以釋放CPU資源。DMA數(shù)據(jù)拷貝過程,典型的有:
內(nèi)存—>內(nèi)存,內(nèi)存間拷貝
外設(shè)—>內(nèi)存,如uart、spi、i2c等總線接收數(shù)據(jù)過程
內(nèi)存—>外設(shè),如uart、spi、i2c等總線發(fā)送數(shù)據(jù)過程
2 串口有必要使用DMA嗎
串口(uart)是一種低速的串行異步通信,適用于低速通信場(chǎng)景,通常使用的波特率小于或等于115200bps。
對(duì)于小于或者等于115200bps波特率的,而且數(shù)據(jù)量不大的通信場(chǎng)景,一般沒必要使用DMA,或者說使用DMA并未能充分發(fā)揮出DMA的作用。
對(duì)于數(shù)量大,或者波特率提高時(shí),必須使用DMA以釋放CPU資源,因?yàn)楦卟ㄌ芈士赡軒磉@樣的問題:
對(duì)于發(fā)送,使用循環(huán)發(fā)送,可能阻塞線程,需要消耗大量CPU資源“搬運(yùn)”數(shù)據(jù),浪費(fèi)CPU
對(duì)于發(fā)送,使用中斷發(fā)送,不會(huì)阻塞線程,但需浪費(fèi)大量中斷資源,CPU頻繁響應(yīng)中斷;以115200bps波特率,1s傳輸11520字節(jié),大約69us需響應(yīng)一次中斷,如波特率再提高,將消耗更多CPU資源
對(duì)于接收,如仍采用傳統(tǒng)的中斷模式接收,同樣會(huì)因?yàn)轭l繁中斷導(dǎo)致消耗大量CPU資源
因此,高波特率場(chǎng)景下,串口非常有必要使用DMA。
3 實(shí)現(xiàn)方式
整體設(shè)計(jì)圖
4 STM32串口使用DMA
關(guān)于STM32串口使用DMA,不乏一些開發(fā)板例程及網(wǎng)絡(luò)上一些博主的使用教程。使用步驟、流程、配置基本大同小異,正確性也沒什么毛病,但都是一些基本的Demo例子,作為學(xué)習(xí)過程沒問題;實(shí)際項(xiàng)目使用缺乏嚴(yán)謹(jǐn)性,數(shù)據(jù)量大時(shí)可能導(dǎo)致數(shù)據(jù)異常。
測(cè)試平臺(tái):
STM32F030C8T6
UART1/UART2
DMA1 Channel2—Channel5
ST標(biāo)準(zhǔn)庫(kù)
主頻48MHz(外部12MHz晶振)
在這里插入圖片描述
5 串口DMA接收
5.1 基本流程
串口接收流程圖
5.2 相關(guān)配置
關(guān)鍵步驟
【1】初始化串口
【2】使能串口DMA接收模式,使能串口空閑中斷
【3】配置DMA參數(shù),使能DMA通道buf半滿(傳輸一半數(shù)據(jù))中斷、buf溢滿(傳輸數(shù)據(jù)完成)中斷
為什么需要使用DMA 通道buf半滿中斷?
很多串口DMA模式接收的教程、例子,基本是使用了“空間中斷”+“DMA傳輸完成中斷”來接收數(shù)據(jù)。
實(shí)質(zhì)上這是存在風(fēng)險(xiǎn)的,當(dāng)DMA傳輸數(shù)據(jù)完成,CPU介入開始拷貝DMA通道buf數(shù)據(jù),如果此時(shí)串口繼續(xù)有數(shù)據(jù)進(jìn)來,DMA繼續(xù)搬運(yùn)數(shù)據(jù)到buf,就有可能將數(shù)據(jù)覆蓋,因?yàn)镈MA數(shù)據(jù)搬運(yùn)是不受CPU控制的,即使你關(guān)閉了CPU中斷。
嚴(yán)謹(jǐn)?shù)淖龇ㄐ枰鲭pbuf,CPU和DMA各自一塊內(nèi)存交替訪問,即是"乒乓緩存” ,處理流程步驟應(yīng)該是這樣:
【1】第一步,DMA先將數(shù)據(jù)搬運(yùn)到buf1,搬運(yùn)完成通知CPU來拷貝buf1數(shù)據(jù)
【2】第二步,DMA將數(shù)據(jù)搬運(yùn)到buf2,與CPU拷貝buf1數(shù)據(jù)不會(huì)沖突
【3】第三步,buf2數(shù)據(jù)搬運(yùn)完成,通知CPU來拷貝buf2數(shù)據(jù)
【4】執(zhí)行完第三步,DMA返回執(zhí)行第一步,一直循環(huán)
雙緩存DMA數(shù)據(jù)搬運(yùn)過程
STM32F0系列DMA不支持雙緩存(以具體型號(hào)為準(zhǔn))機(jī)制,但提供了一個(gè)buf"半滿中斷"。
即是數(shù)據(jù)搬運(yùn)到buf大小的一半時(shí),可以產(chǎn)生一個(gè)中斷信號(hào)?;谶@個(gè)機(jī)制,我們可以實(shí)現(xiàn)雙緩存功能,只需將buf空間開辟大一點(diǎn)即可。
【1】第一步,DMA將數(shù)據(jù)搬運(yùn)完成buf的前一半時(shí),產(chǎn)生“半滿中斷”,CPU來拷貝buf前半部分?jǐn)?shù)據(jù)
【2】第二步,DMA繼續(xù)將數(shù)據(jù)搬運(yùn)到buf的后半部分,與CPU拷貝buf前半部數(shù)據(jù)不會(huì)沖突
【3】第三步,buf后半部分?jǐn)?shù)據(jù)搬運(yùn)完成,觸發(fā)“溢滿中斷”,CPU來拷貝buf后半部分?jǐn)?shù)據(jù)
【4】執(zhí)行完第三步,DMA返回執(zhí)行第一步,一直循環(huán)
使用半滿中斷DMA數(shù)據(jù)搬運(yùn)過程
UART2 DMA模式接收配置代碼如下,與其他外設(shè)使用DMA的配置基本一致,留意關(guān)鍵配置:
串口接收,DMA通道工作模式設(shè)為連續(xù)模式
使能DMA通道接收buf半滿中斷、溢滿(傳輸完成)中斷
啟動(dòng)DMA通道前清空相關(guān)狀態(tài)標(biāo)識(shí),防止首次傳輸錯(cuò)亂數(shù)據(jù)
左右滑動(dòng)查看全部代碼>>>
voidbsp_uart2_dmarx_config(uint8_t*mem_addr,uint32_tmem_size) { DMA_InitTypeDefDMA_InitStructure; DMA_DeInit(DMA1_Channel5); DMA_Cmd(DMA1_Channel5,DISABLE); DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->RDR);/*UART2接收數(shù)據(jù)地址*/ DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;/*接收buf*/ DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;/*傳輸方向:外設(shè)->內(nèi)存*/ DMA_InitStructure.DMA_BufferSize=mem_size;/*接收buf大小*/ DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Mode=DMA_Mode_Circular;/*連續(xù)模式*/ DMA_InitStructure.DMA_Priority=DMA_Priority_VeryHigh; DMA_InitStructure.DMA_M2M=DMA_M2M_Disable; DMA_Init(DMA1_Channel5,&DMA_InitStructure); DMA_ITConfig(DMA1_Channel5,DMA_IT_TC|DMA_IT_HT|DMA_IT_TE,ENABLE);/*使能DMA半滿、溢滿、錯(cuò)誤中斷*/ DMA_ClearFlag(DMA1_IT_TC5);/*清除相關(guān)狀態(tài)標(biāo)識(shí)*/ DMA_ClearFlag(DMA1_IT_HT5); DMA_Cmd(DMA1_Channel5,ENABLE); }
DMA 錯(cuò)誤中斷“DMA_IT_TE”,一般用于前期調(diào)試使用,用于檢查DMA出現(xiàn)錯(cuò)誤的次數(shù),發(fā)布軟件可以不使能該中斷。
5.3 接收處理
基于上述描述機(jī)制,DMA方式接收串口數(shù)據(jù),有三種中斷場(chǎng)景需要CPU去將buf數(shù)據(jù)拷貝到fifo中,分別是:
DMA通道buf溢滿(傳輸完成)場(chǎng)景
DMA通道buf半滿場(chǎng)景
串口空閑中斷場(chǎng)景
前兩者場(chǎng)景,前面文章已經(jīng)描述。串口空閑中斷指的是,數(shù)據(jù)傳輸完成后,串口監(jiān)測(cè)到一段時(shí)間內(nèi)沒有數(shù)據(jù)進(jìn)來,則觸發(fā)產(chǎn)生的中斷信號(hào)。
5.3 .1 接收數(shù)據(jù)大小
數(shù)據(jù)傳輸過程是隨機(jī)的,數(shù)據(jù)大小也是不定的,存在幾類情況:
數(shù)據(jù)剛好是DMA接收buf的整數(shù)倍,這是理想的狀態(tài)
數(shù)據(jù)量小于DMA接收buf或者小于接收buf的一半,此時(shí)會(huì)觸發(fā)串口空閑中斷
因此,我們需根據(jù)“DMA通道buf大小”、“DMA通道buf剩余空間大小”、“上一次接收的總數(shù)據(jù)大小”來計(jì)算當(dāng)前接收的數(shù)據(jù)大小。
/*獲取DMA通道接收buf剩余空間大小*/ uint16_tDMA_GetCurrDataCounter(DMA_Channel_TypeDef*DMAy_Channelx);
DMA通道buf溢滿場(chǎng)景計(jì)算
接收數(shù)據(jù)大小=DMA通道buf大小-上一次接收的總數(shù)據(jù)大小
DMA通道buf溢滿中斷處理函數(shù):
左右滑動(dòng)查看全部代碼>>>
voiduart_dmarx_done_isr(uint8_tuart_id) { uint16_trecv_size; recv_size=s_uart_dev[uart_id].dmarx_buf_size-s_uart_dev[uart_id].last_dmarx_size; fifo_write(&s_uart_dev[uart_id].rx_fifo, (constuint8_t*)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]),recv_size); s_uart_dev[uart_id].last_dmarx_size=0; }
DMA通道buf半滿場(chǎng)景計(jì)算
接收數(shù)據(jù)大小=DMA通道接收總數(shù)據(jù)大小-上一次接收的總數(shù)據(jù)大小 DMA通道接收總數(shù)據(jù)大小=DMA通道buf大小-DMA通道buf剩余空間大小
DMA通道buf半滿中斷處理函數(shù):
左右滑動(dòng)查看全部代碼>>>
voiduart_dmarx_half_done_isr(uint8_tuart_id) { uint16_trecv_total_size; uint16_trecv_size; if(uart_id==0) { recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart1_get_dmarx_buf_remain_size(); } elseif(uart_id==1) { recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart2_get_dmarx_buf_remain_size(); } recv_size=recv_total_size-s_uart_dev[uart_id].last_dmarx_size; fifo_write(&s_uart_dev[uart_id].rx_fifo, (constuint8_t*)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]),recv_size); s_uart_dev[uart_id].last_dmarx_size=recv_total_size;/*記錄接收總數(shù)據(jù)大小*/ }
串口空閑中斷場(chǎng)景計(jì)算
串口空閑中斷場(chǎng)景的接收數(shù)據(jù)計(jì)算與“DMA通道buf半滿場(chǎng)景”計(jì)算方式是一樣的。
串口空閑中斷處理函數(shù):
左右滑動(dòng)查看全部代碼>>>
voiduart_dmarx_idle_isr(uint8_tuart_id) { uint16_trecv_total_size; uint16_trecv_size; if(uart_id==0) { recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart1_get_dmarx_buf_remain_size(); } elseif(uart_id==1) { recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart2_get_dmarx_buf_remain_size(); } recv_size=recv_total_size-s_uart_dev[uart_id].last_dmarx_size; s_UartTxRxCount[uart_id*2+1]+=recv_size; fifo_write(&s_uart_dev[uart_id].rx_fifo, (constuint8_t*)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]),recv_size); s_uart_dev[uart_id].last_dmarx_size=recv_total_size; }
注:串口空閑中斷處理函數(shù),除了將數(shù)據(jù)拷貝到串口接收fifo中,還可以增加特殊處理,如作為串口數(shù)據(jù)傳輸完成標(biāo)識(shí)、不定長(zhǎng)度數(shù)據(jù)處理等等。
5.3.2 接收數(shù)據(jù)偏移地址
將有效數(shù)據(jù)拷貝到fifo中,除了需知道有效數(shù)據(jù)大小外,還需知道數(shù)據(jù)存儲(chǔ)于DMA 接收buf的偏移地址。
有效數(shù)據(jù)偏移地址只需記錄上一次接收的總大小即,可,在DMA通道buf全滿中斷處理函數(shù)將該值清零,因?yàn)橄乱淮螖?shù)據(jù)將從buf的開頭存儲(chǔ)。
在DMA通道buf溢滿中斷處理函數(shù)中將數(shù)據(jù)偏移地址清零:
voiduart_dmarx_done_isr(uint8_tuart_id) { /*todo*/ s_uart_dev[uart_id].last_dmarx_size=0; }
5.4 應(yīng)用讀取串口數(shù)據(jù)方法
經(jīng)過前面的處理步驟,已將串口數(shù)據(jù)拷貝至接收fifo,應(yīng)用程序任務(wù)只需從fifo獲取數(shù)據(jù)進(jìn)行處理。前提是,處理效率必須大于DAM接收搬運(yùn)數(shù)據(jù)的效率,否則導(dǎo)致數(shù)據(jù)丟失或者被覆蓋處理。
6 串口DMA發(fā)送
6.1 基本流程
串口發(fā)送流程圖
6.2 相關(guān)配置
關(guān)鍵步驟
【1】初始化串口
【2】使能串口DMA發(fā)送模式
【3】配置DMA發(fā)送通道,這一步無需在初始化設(shè)置,有數(shù)據(jù)需要發(fā)送時(shí)才配置使能DMA發(fā)送通道
UART2 DMA模式發(fā)送配置代碼如下,與其他外設(shè)使用DMA的配置基本一致,留意關(guān)鍵配置:
串口發(fā)送是,DMA通道工作模式設(shè)為單次模式(正常模式),每次需要發(fā)送數(shù)據(jù)時(shí)重新配置DMA
使能DMA通道傳輸完成中斷,利用該中斷信息處理一些必要的任務(wù),如清空發(fā)送狀態(tài)、啟動(dòng)下一次傳輸
啟動(dòng)DMA通道前清空相關(guān)狀態(tài)標(biāo)識(shí),防止首次傳輸錯(cuò)亂數(shù)據(jù)
左右滑動(dòng)查看全部代碼>>>
voidbsp_uart2_dmatx_config(uint8_t*mem_addr,uint32_tmem_size) { DMA_InitTypeDefDMA_InitStructure; DMA_DeInit(DMA1_Channel4); DMA_Cmd(DMA1_Channel4,DISABLE); DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->TDR);/*UART2發(fā)送數(shù)據(jù)地址*/ DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;/*發(fā)送數(shù)據(jù)buf*/ DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralDST;/*傳輸方向:內(nèi)存->外設(shè)*/ DMA_InitStructure.DMA_BufferSize=mem_size;/*發(fā)送數(shù)據(jù)buf大小*/ DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Mode=DMA_Mode_Normal;/*單次模式*/ DMA_InitStructure.DMA_Priority=DMA_Priority_High; DMA_InitStructure.DMA_M2M=DMA_M2M_Disable; DMA_Init(DMA1_Channel4,&DMA_InitStructure); DMA_ITConfig(DMA1_Channel4,DMA_IT_TC|DMA_IT_TE,ENABLE);/*使能傳輸完成中斷、錯(cuò)誤中斷*/ DMA_ClearFlag(DMA1_IT_TC4);/*清除發(fā)送完成標(biāo)識(shí)*/ DMA_Cmd(DMA1_Channel4,ENABLE);/*啟動(dòng)DMA發(fā)送*/ }
6.3 發(fā)送處理
串口待發(fā)送數(shù)據(jù)存于發(fā)送fifo中,發(fā)送處理函數(shù)需要做的的任務(wù)就是循環(huán)查詢發(fā)送fifo是否存在數(shù)據(jù),如存在則將該數(shù)據(jù)拷貝到DMA發(fā)送buf中,然后啟動(dòng)DMA傳輸。
前提是需要等待上一次DMA傳輸完畢,即是DMA接收到DMA傳輸完成中斷信號(hào)"DMA_IT_TC"。
串口發(fā)送處理函數(shù):
左右滑動(dòng)查看全部代碼>>>
voiduart_poll_dma_tx(uint8_tuart_id) { uint16_tsize=0; if(0x01==s_uart_dev[uart_id].status) { return; } size=fifo_read(&s_uart_dev[uart_id].tx_fifo,s_uart_dev[uart_id].dmatx_buf, s_uart_dev[uart_id].dmatx_buf_size); if(size!=0) { s_UartTxRxCount[uart_id*2+0]+=size; if(uart_id==0) { s_uart_dev[uart_id].status=0x01;/*DMA發(fā)送狀態(tài)*/ bsp_uart1_dmatx_config(s_uart_dev[uart_id].dmatx_buf,size); } elseif(uart_id==1) { s_uart_dev[uart_id].status=0x01;/*DMA發(fā)送狀態(tài),必須在使能DMA傳輸前置位,否則有可能DMA已經(jīng)傳輸并進(jìn)入中斷*/ bsp_uart2_dmatx_config(s_uart_dev[uart_id].dmatx_buf,size); } } }
注意發(fā)送狀態(tài)標(biāo)識(shí),必須先置為“發(fā)送狀態(tài)”,然后啟動(dòng)DMA 傳輸。如果步驟反過來,在傳輸數(shù)據(jù)量少時(shí),DMA傳輸時(shí)間短,“DMA_IT_TC”中斷可能比“發(fā)送狀態(tài)標(biāo)識(shí)置位”先執(zhí)行,導(dǎo)致程序誤判DMA一直處理發(fā)送狀態(tài)(發(fā)送標(biāo)識(shí)無法被清除)。
注:關(guān)于DMA發(fā)送數(shù)據(jù)啟動(dòng)函數(shù),有些博客文章描述只需改變DMA發(fā)送buf的大小即可;經(jīng)過測(cè)試發(fā)現(xiàn),該方法在發(fā)送數(shù)據(jù)量較小時(shí)可行,數(shù)據(jù)量大后,導(dǎo)致發(fā)送失敗,而且不會(huì)觸發(fā)DMA發(fā)送完成中斷。因此,可靠辦法是:每次啟動(dòng)DMA發(fā)送,重新配置DMA通道所有參數(shù)。該步驟只是配置寄存器過程,實(shí)質(zhì)上不會(huì)占用很多CPU執(zhí)行時(shí)間。
DMA傳輸完成中斷處理函數(shù):
voiduart_dmatx_done_isr(uint8_tuart_id) { s_uart_dev[uart_id].status=0;/*清空DMA發(fā)送狀態(tài)標(biāo)識(shí)*/ }
上述串口發(fā)送處理函數(shù)可以在幾種情況調(diào)用:
主線程任務(wù)調(diào)用,前提是線程不能被其他任務(wù)阻塞,否則導(dǎo)致fifo溢出
voidthread(void) { uart_poll_dma_tx(DEV_UART1); uart_poll_dma_tx(DEV_UART2); }
定時(shí)器中斷中調(diào)用
voidTIMx_IRQHandler(void) { uart_poll_dma_tx(DEV_UART1); uart_poll_dma_tx(DEV_UART2); }
DMA通道傳輸完成中斷中調(diào)用
voidDMA1_Channel4_5_IRQHandler(void) { if(DMA_GetITStatus(DMA1_IT_TC4)) { UartDmaSendDoneIsr(UART_2); DMA_ClearFlag(DMA1_FLAG_TC4); uart_poll_dma_tx(DEV_UART2); } }
每次拷貝多少數(shù)據(jù)量到DMA發(fā)送buf:
關(guān)于這個(gè)問題,與具體應(yīng)用場(chǎng)景有關(guān),遵循的原則就是:只要發(fā)送fifo的數(shù)據(jù)量大于等于DMA發(fā)送buf的大小,就應(yīng)該填滿DMA發(fā)送buf,然后啟動(dòng)DMA傳輸,這樣才能充分發(fā)揮會(huì)DMA性能。
因此,需兼顧每次DMA傳輸?shù)男屎痛跀?shù)據(jù)流實(shí)時(shí)性,參考著幾類實(shí)現(xiàn):
周期查詢發(fā)送fifo數(shù)據(jù),啟動(dòng)DMA傳輸,充分利用DMA發(fā)送效率,但可能降低串口數(shù)據(jù)流實(shí)時(shí)性
實(shí)時(shí)查詢發(fā)送fifo數(shù)據(jù),加上超時(shí)處理,理想的方法
在DMA傳輸完成中斷中處理,保證實(shí)時(shí)連續(xù)數(shù)據(jù)流
7 串口設(shè)備
7.1 數(shù)據(jù)結(jié)構(gòu)
/*串口設(shè)備數(shù)據(jù)結(jié)構(gòu)*/ typedefstruct { uint8_tstatus;/*發(fā)送狀態(tài)*/ _fifo_ttx_fifo;/*發(fā)送fifo*/ _fifo_trx_fifo;/*接收fifo*/ uint8_t*dmarx_buf;/*dma接收緩存*/ uint16_tdmarx_buf_size;/*dma接收緩存大小*/ uint8_t*dmatx_buf;/*dma發(fā)送緩存*/ uint16_tdmatx_buf_size;/*dma發(fā)送緩存大小*/ uint16_tlast_dmarx_size;/*dma上一次接收數(shù)據(jù)大小*/ }uart_device_t;
7.2 對(duì)外接口
左右滑動(dòng)查看全部代碼>>>
/*串口注冊(cè)初始化函數(shù)*/ voiduart_device_init(uint8_tuart_id) { if(uart_id==1) { /*配置串口2收發(fā)fifo*/ fifo_register(&s_uart_dev[uart_id].tx_fifo,&s_uart2_tx_buf[0], sizeof(s_uart2_tx_buf),fifo_lock,fifo_unlock); fifo_register(&s_uart_dev[uart_id].rx_fifo,&s_uart2_rx_buf[0], sizeof(s_uart2_rx_buf),fifo_lock,fifo_unlock); /*配置串口2DMA收發(fā)buf*/ s_uart_dev[uart_id].dmarx_buf=&s_uart2_dmarx_buf[0]; s_uart_dev[uart_id].dmarx_buf_size=sizeof(s_uart2_dmarx_buf); s_uart_dev[uart_id].dmatx_buf=&s_uart2_dmatx_buf[0]; s_uart_dev[uart_id].dmatx_buf_size=sizeof(s_uart2_dmatx_buf); bsp_uart2_dmarx_config(s_uart_dev[uart_id].dmarx_buf, sizeof(s_uart2_dmarx_buf)); s_uart_dev[uart_id].status=0; } } /*串口發(fā)送函數(shù)*/ uint16_tuart_write(uint8_tuart_id,constuint8_t*buf,uint16_tsize) { returnfifo_write(&s_uart_dev[uart_id].tx_fifo,buf,size); } /*串口讀取函數(shù)*/ uint16_tuart_read(uint8_tuart_id,uint8_t*buf,uint16_tsize) { returnfifo_read(&s_uart_dev[uart_id].rx_fifo,buf,size); }
8 相關(guān)文章
依賴的fifo參考該文章:
通用環(huán)形緩沖區(qū)模塊:
https://acuity.blog.csdn.net/article/details/78902689
9 完整源碼
代碼倉(cāng)庫(kù):
https://github.com/Prry/stm32f0-uart-dma
串口&DMA底層配置:
左右滑動(dòng)查看全部代碼>>>
#include#include #include #include"stm32f0xx.h" #include"bsp_uart.h" /** *@brief *@param *@retval */ staticvoidbsp_uart1_gpio_init(void) { GPIO_InitTypeDefGPIO_InitStructure; #if0 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB,ENABLE); GPIO_PinAFConfig(GPIOB,GPIO_PinSource6,GPIO_AF_0); GPIO_PinAFConfig(GPIOB,GPIO_PinSource7,GPIO_AF_0); GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6|GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType=GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_Level_3; GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP; GPIO_Init(GPIOB,&GPIO_InitStructure); #else RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA,ENABLE); GPIO_PinAFConfig(GPIOB,GPIO_PinSource9,GPIO_AF_1); GPIO_PinAFConfig(GPIOB,GPIO_PinSource10,GPIO_AF_1); GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType=GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_Level_3; GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP; GPIO_Init(GPIOA,&GPIO_InitStructure); #endif } /** *@brief *@param *@retval */ staticvoidbsp_uart2_gpio_init(void) { GPIO_InitTypeDefGPIO_InitStructure; RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB,ENABLE); GPIO_PinAFConfig(GPIOA,GPIO_PinSource2,GPIO_AF_1); GPIO_PinAFConfig(GPIOA,GPIO_PinSource3,GPIO_AF_1); GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType=GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_10MHz; GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP; GPIO_Init(GPIOA,&GPIO_InitStructure); } /** *@brief *@param *@retval */ voidbsp_uart1_init(void) { USART_InitTypeDefUSART_InitStructure; NVIC_InitTypeDefNVIC_InitStructure; bsp_uart1_gpio_init(); /*使能串口和DMA時(shí)鐘*/ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); USART_InitStructure.USART_BaudRate=57600; USART_InitStructure.USART_WordLength=USART_WordLength_8b; USART_InitStructure.USART_StopBits=USART_StopBits_1; USART_InitStructure.USART_Parity=USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx; USART_Init(USART1,&USART_InitStructure); USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);/*使能空閑中斷*/ USART_OverrunDetectionConfig(USART1,USART_OVRDetection_Disable); USART_Cmd(USART1,ENABLE); USART_DMACmd(USART1,USART_DMAReq_Rx|USART_DMAReq_Tx,ENABLE);/*使能DMA收發(fā)*/ /*串口中斷*/ NVIC_InitStructure.NVIC_IRQChannel=USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPriority=2; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; NVIC_Init(&NVIC_InitStructure); /*DMA中斷*/ NVIC_InitStructure.NVIC_IRQChannel=DMA1_Channel2_3_IRQn; NVIC_InitStructure.NVIC_IRQChannelPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; NVIC_Init(&NVIC_InitStructure); } /** *@brief *@param *@retval */ voidbsp_uart2_init(void) { USART_InitTypeDefUSART_InitStructure; NVIC_InitTypeDefNVIC_InitStructure; bsp_uart2_gpio_init(); /*使能串口和DMA時(shí)鐘*/ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE); USART_InitStructure.USART_BaudRate=57600; USART_InitStructure.USART_WordLength=USART_WordLength_8b; USART_InitStructure.USART_StopBits=USART_StopBits_1; USART_InitStructure.USART_Parity=USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx; USART_Init(USART2,&USART_InitStructure); USART_ITConfig(USART2,USART_IT_IDLE,ENABLE);/*使能空閑中斷*/ USART_OverrunDetectionConfig(USART2,USART_OVRDetection_Disable); USART_Cmd(USART2,ENABLE); USART_DMACmd(USART2,USART_DMAReq_Rx|USART_DMAReq_Tx,ENABLE);/*使能DMA收發(fā)*/ /*串口中斷*/ NVIC_InitStructure.NVIC_IRQChannel=USART2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPriority=2; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; NVIC_Init(&NVIC_InitStructure); /*DMA中斷*/ NVIC_InitStructure.NVIC_IRQChannel=DMA1_Channel4_5_IRQn; NVIC_InitStructure.NVIC_IRQChannelPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; NVIC_Init(&NVIC_InitStructure); } voidbsp_uart1_dmatx_config(uint8_t*mem_addr,uint32_tmem_size) { DMA_InitTypeDefDMA_InitStructure; DMA_DeInit(DMA1_Channel2); DMA_Cmd(DMA1_Channel2,DISABLE); DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART1->TDR); DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr; DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralDST;/*傳輸方向:內(nèi)存->外設(shè)*/ DMA_InitStructure.DMA_BufferSize=mem_size; DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Mode=DMA_Mode_Normal; DMA_InitStructure.DMA_Priority=DMA_Priority_High; DMA_InitStructure.DMA_M2M=DMA_M2M_Disable; DMA_Init(DMA1_Channel2,&DMA_InitStructure); DMA_ITConfig(DMA1_Channel2,DMA_IT_TC|DMA_IT_TE,ENABLE); DMA_ClearFlag(DMA1_IT_TC2);/*清除發(fā)送完成標(biāo)識(shí)*/ DMA_Cmd(DMA1_Channel2,ENABLE); } voidbsp_uart1_dmarx_config(uint8_t*mem_addr,uint32_tmem_size) { DMA_InitTypeDefDMA_InitStructure; DMA_DeInit(DMA1_Channel3); DMA_Cmd(DMA1_Channel3,DISABLE); DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART1->RDR); DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr; DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;/*傳輸方向:外設(shè)->內(nèi)存*/ DMA_InitStructure.DMA_BufferSize=mem_size; DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Mode=DMA_Mode_Circular; DMA_InitStructure.DMA_Priority=DMA_Priority_VeryHigh; DMA_InitStructure.DMA_M2M=DMA_M2M_Disable; DMA_Init(DMA1_Channel3,&DMA_InitStructure); DMA_ITConfig(DMA1_Channel3,DMA_IT_TC|DMA_IT_HT|DMA_IT_TE,ENABLE);/*使能DMA半滿、全滿、錯(cuò)誤中斷*/ DMA_ClearFlag(DMA1_IT_TC3); DMA_ClearFlag(DMA1_IT_HT3); DMA_Cmd(DMA1_Channel3,ENABLE); } uint16_tbsp_uart1_get_dmarx_buf_remain_size(void) { returnDMA_GetCurrDataCounter(DMA1_Channel3);/*獲取DMA接收buf剩余空間*/ } voidbsp_uart2_dmatx_config(uint8_t*mem_addr,uint32_tmem_size) { DMA_InitTypeDefDMA_InitStructure; DMA_DeInit(DMA1_Channel4); DMA_Cmd(DMA1_Channel4,DISABLE); DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->TDR); DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr; DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralDST;/*傳輸方向:內(nèi)存->外設(shè)*/ DMA_InitStructure.DMA_BufferSize=mem_size; DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Mode=DMA_Mode_Normal; DMA_InitStructure.DMA_Priority=DMA_Priority_High; DMA_InitStructure.DMA_M2M=DMA_M2M_Disable; DMA_Init(DMA1_Channel4,&DMA_InitStructure); DMA_ITConfig(DMA1_Channel4,DMA_IT_TC|DMA_IT_TE,ENABLE); DMA_ClearFlag(DMA1_IT_TC4);/*清除發(fā)送完成標(biāo)識(shí)*/ DMA_Cmd(DMA1_Channel4,ENABLE); } voidbsp_uart2_dmarx_config(uint8_t*mem_addr,uint32_tmem_size) { DMA_InitTypeDefDMA_InitStructure; DMA_DeInit(DMA1_Channel5); DMA_Cmd(DMA1_Channel5,DISABLE); DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->RDR); DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr; DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;/*傳輸方向:外設(shè)->內(nèi)存*/ DMA_InitStructure.DMA_BufferSize=mem_size; DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Mode=DMA_Mode_Circular; DMA_InitStructure.DMA_Priority=DMA_Priority_VeryHigh; DMA_InitStructure.DMA_M2M=DMA_M2M_Disable; DMA_Init(DMA1_Channel5,&DMA_InitStructure); DMA_ITConfig(DMA1_Channel5,DMA_IT_TC|DMA_IT_HT|DMA_IT_TE,ENABLE);/*使能DMA半滿、全滿、錯(cuò)誤中斷*/ DMA_ClearFlag(DMA1_IT_TC5); DMA_ClearFlag(DMA1_IT_HT5); DMA_Cmd(DMA1_Channel5,ENABLE); } uint16_tbsp_uart2_get_dmarx_buf_remain_size(void) { returnDMA_GetCurrDataCounter(DMA1_Channel5);/*獲取DMA接收buf剩余空間*/ }
壓力測(cè)試:
1.5Mbps波特率,串口助手每毫秒發(fā)送1k字節(jié)數(shù)據(jù),stm32f0 DMA接收數(shù)據(jù),再通過DMA發(fā)送回串口助手,毫無壓力。
1.5Mbps波特率,可傳輸大文件測(cè)試,將接收數(shù)據(jù)保存為文件,與源文件比較。
串口高波特率測(cè)試需要USB轉(zhuǎn)TLL工具及串口助手都支持才可行,推薦CP2102、FT232芯片的USB轉(zhuǎn)TTL工具。
1.5Mbps串口回環(huán)壓力測(cè)試
審核編輯:湯梓紅
-
存儲(chǔ)器
+關(guān)注
關(guān)注
38文章
7492瀏覽量
163854 -
串口
+關(guān)注
關(guān)注
14文章
1554瀏覽量
76532 -
dma
+關(guān)注
關(guān)注
3文章
561瀏覽量
100593
原文標(biāo)題:9 完整源碼
文章出處:【微信號(hào):技術(shù)讓夢(mèng)想更偉大,微信公眾號(hào):技術(shù)讓夢(mèng)想更偉大】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論