DIGITIMES Research觀察,伴隨CPU、GPU、FPGA等高效能運(yùn)算(HPC)芯片性能要求持續(xù)提升,覆晶封裝(Flip Chip;FC)、層疊封裝(Package on Package;PoP)等傳統(tǒng)封裝技術(shù)已不敷使用,使2.5D/3D封裝技術(shù)需求逐漸增加,吸引半導(dǎo)體制造業(yè)者積極布局,其中,IDM與晶圓代工業(yè)者2.5D技術(shù)發(fā)展相對(duì)委外半導(dǎo)體封測(cè)(OSAT)業(yè)者成熟、完整,也具有多年量產(chǎn)經(jīng)驗(yàn),3D封裝技術(shù)則將陸續(xù)開(kāi)花結(jié)果。
覆晶封裝雖是現(xiàn)行芯片封裝主流技術(shù),然2.5D/3D封裝提供較覆晶封裝7~8倍以上的I/O數(shù)增量,以及更高密度集成更多芯片/模塊,有助芯片提升效能、改善功耗等,增加HPC芯片業(yè)者采用2.5D/3D技術(shù)的誘因。具體來(lái)看,NVIDIA與超微(AMD) CPU與GPU、英特爾(Intel)與賽靈思(Xilinx) FPGA等多為2.5D封裝,而英特爾Lakefield CPU更是首個(gè)以3D封裝的CPU。
HPC芯片所催生的2.5D/3D封裝商機(jī)吸引IC制造業(yè)者積極布局,其中,英特爾、三星電子(Samsung Electronic)與臺(tái)積電已具成熟的2.5D封裝經(jīng)驗(yàn);3D封裝部分,英特爾已量產(chǎn)Foveros技術(shù),三星與臺(tái)積電則將在2021~2022年陸續(xù)量產(chǎn)。日月光、安靠(Amkor)等OSAT業(yè)者雖布局2.5D/3D封裝,但技術(shù)方案仍不若IDM與晶圓代工業(yè)者完整,然逐漸強(qiáng)化中。
2.5D和3D封裝技術(shù)有何異同?
除了先進(jìn)制程之外,先進(jìn)封裝也成為延續(xù)摩爾定律的關(guān)鍵技術(shù),像是2.5D、3D等技術(shù)在近年來(lái)成為半導(dǎo)體產(chǎn)業(yè)的熱門(mén)議題。究竟,先進(jìn)封裝是如何在延續(xù)摩爾定律上扮演關(guān)鍵角色?而2.5D、3D等封裝技術(shù)又有何特點(diǎn)?
人工智能(AI)、車(chē)聯(lián)網(wǎng)、5G 等應(yīng)用相繼興起,且皆須使用到高速運(yùn)算、高速傳輸、低延遲、低耗能的先進(jìn)功能芯片;然而,隨著運(yùn)算需求呈倍數(shù)成長(zhǎng),究竟要如何延續(xù)摩爾定律,成為半導(dǎo)體產(chǎn)業(yè)的一大挑戰(zhàn)。
芯片微縮愈加困難,異構(gòu)整合由此而生
換言之,半導(dǎo)體先進(jìn)制程紛紛邁入了7 納米、5 納米,接著開(kāi)始朝3 納米和2 納米邁進(jìn),電晶體大小也因此不斷接近原子的物理體積限制,電子及物理的限制也讓先進(jìn)制程的持續(xù)微縮與升級(jí)難度越來(lái)越高。
也因此,半導(dǎo)體產(chǎn)業(yè)除了持續(xù)發(fā)展先進(jìn)制程之外,也「山不轉(zhuǎn)路轉(zhuǎn)」地開(kāi)始找尋其他既能讓芯片維持小體積,同時(shí)又保有高效能的方式;而芯片的布局設(shè)計(jì),遂成為延續(xù)摩爾定律的新解方,異構(gòu)整合(Heterogeneous Integration Design Architecture System,HIDAS)概念便應(yīng)運(yùn)而生,同時(shí)成為IC 芯片的創(chuàng)新動(dòng)能。
▲異構(gòu)整合成為實(shí)現(xiàn)小體積、高效能芯片的另一種方式。(Source:SEMI)
所謂的異構(gòu)整合,廣義而言,就是將兩種不同的芯片,例如記憶體+邏輯芯片、光電+電子元件等,透過(guò)封裝、3D 堆疊等技術(shù)整合在一起。換句話(huà)說(shuō),將兩種不同制程、不同性質(zhì)的芯片整合在一起,都可稱(chēng)為是異構(gòu)整合。
因?yàn)閼?yīng)用市場(chǎng)更加的多元,每項(xiàng)產(chǎn)品的成本、性能和目標(biāo)族群都不同,因此所需的異構(gòu)整合技術(shù)也不盡相同,市場(chǎng)分眾化趨勢(shì)逐漸浮現(xiàn)。為此,IC 代工、制造及半導(dǎo)體設(shè)備業(yè)者紛紛投入異構(gòu)整合發(fā)展,2.5D、3D 封裝、Chiplets 等現(xiàn)今熱門(mén)的封裝技術(shù),便是基于異構(gòu)整合的想法,如雨后春筍般浮現(xiàn)。
2.5D 封裝有效降低芯片生產(chǎn)成本
過(guò)往要將芯片整合在一起,大多使用系統(tǒng)單封裝(System in a Package,SiP)技術(shù),像是PiP(Package in Package)封裝、PoP(Package on Package)封裝等。然而,隨著智能手機(jī)、AIoT 等應(yīng)用,不僅需要更高的性能,還要保持小體積、低功耗,在這樣的情況下,必須想辦法將更多的芯片堆積起來(lái)使體積再縮小,因此,目前封裝技術(shù)除了原有的SiP 之外,也紛紛朝向立體封裝技術(shù)發(fā)展。
立體封裝概略來(lái)說(shuō),意即直接使用矽晶圓制作的「矽中介板」(Silicon interposer),而不使用以往塑膠制作的「導(dǎo)線(xiàn)載板」,將數(shù)個(gè)功能不同的芯片,直接封裝成一個(gè)具更高效能的芯片。換言之,就是朝著芯片疊高的方式,在矽上面不斷疊加矽芯片,改善制程成本及物理限制,讓摩爾定律得以繼續(xù)實(shí)現(xiàn)。
而立體封裝較為人熟知的是2.5D 與3D 封裝,這邊先從2.5D 封裝談起。所謂的2.5D 封裝,主要的概念是將處理器、記憶體或是其他的芯片,并列排在矽中介板(Silicon Interposer)上,先經(jīng)由微凸塊(Micro Bump)連結(jié),讓矽中介板之內(nèi)金屬線(xiàn)可連接不同芯片的電子訊號(hào);接著再透過(guò)矽穿孔(TSV)來(lái)連結(jié)下方的金屬凸塊(Solder Bump),再經(jīng)由導(dǎo)線(xiàn)載板連結(jié)外部金屬球,實(shí)現(xiàn)芯片、芯片與封裝基板之間更緊密的互連。
▲ 2.5D和3D封裝是熱門(mén)的立體封裝技術(shù)。(Source:ANSYS)
目前為人所熟知的2.5D 封裝技術(shù),不外乎是臺(tái)積電的CoWoS。CoWoS 技術(shù)概念,簡(jiǎn)單來(lái)說(shuō)是先將半導(dǎo)體芯片(像是處理器、記憶體等),一同放在矽中介層上,再透過(guò)Chip on Wafer(CoW)的封裝制程連接至底層基板上。換言之,也就是先將芯片通過(guò)Chip on Wafer(CoW)的封裝制程連接至矽晶圓,再把CoW 芯片與基板連接,整合成CoWoS;利用這種封裝模式,使得多顆芯片可以封裝到一起,透過(guò)Si Interposer 互聯(lián),達(dá)到了封裝體積小,功耗低,引腳少的效果。
▲臺(tái)積電CoWos封裝技術(shù)概念。(Source:臺(tái)積電)
除了CoWos 外,扇出型晶圓級(jí)封裝也可歸為2.5D 封裝的一種方式。扇出型晶圓級(jí)封裝技術(shù)的原理,是從半導(dǎo)體裸晶的端點(diǎn)上,拉出需要的電路至重分布層(Redistribution Layer),進(jìn)而形成封裝。因此不需封裝載板,不用打線(xiàn)(Wire)、凸塊(Bump),能夠降低30% 的生產(chǎn)成本,也讓芯片更薄。同時(shí)也讓芯片面積減少許多,也可取代成本較高的直通矽晶穿孔,達(dá)到透過(guò)封裝技術(shù)整合不同元件功能的目標(biāo)。
當(dāng)然,立體封裝技術(shù)不只有2.5D,還有3D 封裝。那么,兩者之間的差別究竟為何,而3D 封裝又有半導(dǎo)體業(yè)者正在采用?
相較于2.5D 封裝,3D 封裝的原理是在芯片制作電晶體(CMOS)結(jié)構(gòu),并且直接使用矽穿孔來(lái)連結(jié)上下不同芯片的電子訊號(hào),以直接將記憶體或其他芯片垂直堆疊在上面。此項(xiàng)封裝最大的技術(shù)挑戰(zhàn)便是,要在芯片內(nèi)直接制作矽穿孔困難度極高,不過(guò),由于高效能運(yùn)算、人工智能等應(yīng)用興起,加上TSV 技術(shù)愈來(lái)愈成熟,可以看到越來(lái)越多的CPU、GPU 和記憶體開(kāi)始采用3D 封裝。
▲ 3D封裝是直接將芯片堆疊起來(lái)。(Source:英特爾)
臺(tái)積電、英特爾積極發(fā)展3D 封裝技術(shù)
在3D 封裝上,英特爾(Intel)和臺(tái)積電都有各自的技術(shù)。英特爾采用的是「Foveros」的3D 封裝技術(shù),使用異構(gòu)堆疊邏輯處理運(yùn)算,可以把各個(gè)邏輯芯片堆棧一起。也就是說(shuō),首度把芯片堆疊從傳統(tǒng)的被動(dòng)矽中介層與堆疊記憶體,擴(kuò)展到高效能邏輯產(chǎn)品,如CPU、繪圖與AI 處理器等。以往堆疊僅用于記憶體,現(xiàn)在采用異構(gòu)堆疊于堆疊以往僅用于記憶體,現(xiàn)在采用異構(gòu)堆疊,讓記憶體及運(yùn)算芯片能以不同組合堆疊。
另外,英特爾還研發(fā)3 項(xiàng)全新技術(shù),分別為Co-EMIB、ODI 和MDIO。Co-EMIB 能連接更高的運(yùn)算性能和能力,并能夠讓兩個(gè)或多個(gè)Foveros 元件互連,設(shè)計(jì)人員還能夠以非常高的頻寬和非常低的功耗連接模擬器、記憶體和其他模組。ODI 技術(shù)則為封裝中小芯片之間的全方位互連通訊提供了更大的靈活性。頂部芯片可以像EMIB 技術(shù)一樣與其他小芯片進(jìn)行通訊,同時(shí)還可以像Foveros 技術(shù)一樣,通過(guò)矽通孔(TSV)與下面的底部裸片進(jìn)行垂直通訊。
同時(shí),該技術(shù)還利用大的垂直通孔直接從封裝基板向頂部裸片供電,這種大通孔比傳統(tǒng)的矽通孔大得多,其電阻更低,因而可提供更穩(wěn)定的電力傳輸;并透過(guò)堆疊實(shí)現(xiàn)更高頻寬和更低延遲。此一方法減少基底芯片中所需的矽通孔數(shù)量,為主動(dòng)元件釋放了更多的面積,優(yōu)化裸片尺寸。
而臺(tái)積電,則是提出「3D 多芯片與系統(tǒng)整合芯片」(SoIC)的整合方案。此項(xiàng)系統(tǒng)整合芯片解決方案將不同尺寸、制程技術(shù),以及材料的已知良好裸晶直接堆疊在一起。
臺(tái)積電提到,相較于傳統(tǒng)使用微凸塊的3D 積體電路解決方案,此一系統(tǒng)整合芯片的凸塊密度與速度高出數(shù)倍,同時(shí)大幅減少功耗。此外,系統(tǒng)整合芯片是前段制程整合解決方案,在封裝之前連結(jié)兩個(gè)或更多的裸晶;因此,系統(tǒng)整合芯片組能夠利用該公司的InFO 或CoWoS 的后端先進(jìn)封裝技術(shù)來(lái)進(jìn)一步整合其他芯片,打造一個(gè)強(qiáng)大的「3D×3D」系統(tǒng)級(jí)解決方案。
▲臺(tái)積電SoIC整合方案。(Source:臺(tái)積電)
此外,臺(tái)積電亦推出3DFabric,將快速成長(zhǎng)的3DIC 系統(tǒng)整合解決方案統(tǒng)合起來(lái),提供更好的靈活性,透過(guò)穩(wěn)固的芯片互連打造出強(qiáng)大的系統(tǒng)。藉由不同的選項(xiàng)進(jìn)行前段芯片堆疊與后段封裝,3DFabric 協(xié)助客戶(hù)將多個(gè)邏輯芯片連結(jié)在一起,甚至串聯(lián)高頻寬記憶體(HBM)或異構(gòu)小芯片,例如類(lèi)比、輸入/輸出,以及射頻模組。3DFabric 能夠結(jié)合后段3D 與前段3D 技術(shù)的解決方案,并能與電晶體微縮互補(bǔ),持續(xù)提升系統(tǒng)效能與功能性,縮小尺寸外觀,并且加快產(chǎn)品上市時(shí)程。
編輯:lyn
-
芯片
+關(guān)注
關(guān)注
456文章
50908瀏覽量
424447 -
半導(dǎo)體
+關(guān)注
關(guān)注
334文章
27467瀏覽量
219541 -
3D封裝
+關(guān)注
關(guān)注
7文章
134瀏覽量
27144
原文標(biāo)題:【DIGITIMES Research】2.5D/3D封裝快速成長(zhǎng) 滿(mǎn)足HPC芯片發(fā)展是關(guān)鍵
文章出處:【微信號(hào):DIGITIMES,微信公眾號(hào):DIGITIMES】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論