0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò):CNN的求解

如意 ? 來源:CSDN ? 作者:呆呆的貓 ? 2020-08-24 16:04 ? 次閱讀

CNN的求解

CNN在本質(zhì)上是一種輸入到輸出的映射,它能夠?qū)W習(xí)大量的輸入與輸出之間的映射關(guān)系,而不需要任何輸入和輸出之間的精確的數(shù)學(xué)表達式,只要用已知的模式對卷積網(wǎng)絡(luò)加以訓(xùn)練,網(wǎng)絡(luò)就具有輸入輸出對之間的映射能力。

卷積網(wǎng)絡(luò)執(zhí)行的是監(jiān)督訓(xùn)練,所以其樣本集是由形如:**(輸入向量,理想輸出向量)**的向量對構(gòu)成的。所有這些向量對,都應(yīng)該是來源于網(wǎng)絡(luò)即將模擬系統(tǒng)的實際“運行”結(jié)構(gòu),它們可以是從實際運行系統(tǒng)中采集來。

1)參數(shù)初始化:

在開始訓(xùn)練前,所有的權(quán)都應(yīng)該用一些不同的隨機數(shù)進行初始化。“小隨機數(shù)”用來保證網(wǎng)絡(luò)不會因權(quán)值過大而進入飽和狀態(tài),從而導(dǎo)致訓(xùn)練失敗;“不同”用來保證網(wǎng)絡(luò)可以正常地學(xué)習(xí)。實際上,如果用相同的數(shù)去初始化權(quán)矩陣,則網(wǎng)絡(luò)無學(xué)習(xí)能力。

2)訓(xùn)練過程包括四步

① 第一階段:前向傳播階段

從樣本集中取一個樣本,輸入網(wǎng)絡(luò)

計算相應(yīng)的實際輸出;在此階段信息從輸入層經(jīng)過逐級的變換,傳送到輸出層,這個過程也是網(wǎng)絡(luò)在完成訓(xùn)練之后正常執(zhí)行時執(zhí)行的過程

② 第二階段:后向傳播階段

計算實際輸出與相應(yīng)的理想輸出的差

按照極小化誤差的方法調(diào)整權(quán)值矩陣

網(wǎng)絡(luò)的訓(xùn)練過程如下:

選定訓(xùn)練組,從樣本集中分別隨機地尋求N個樣本作為訓(xùn)練組;

將各權(quán)值、閾值,置成小的接近于0的隨機值,并初始化精度控制參數(shù)和學(xué)習(xí)率;

從訓(xùn)練組中取一個輸入模式加到網(wǎng)絡(luò),并給出它的目標輸出向量;

計算出中間層輸出向量,計算出網(wǎng)絡(luò)的實際輸出向量;

將輸出向量中的元素與目標向量中的元素進行比較,計算出輸出誤差;對于中間層的隱單元也需要計算出誤差;

依次計算出各權(quán)值的調(diào)整量和閾值的調(diào)整量;

調(diào)整權(quán)值和調(diào)整閾值;

當(dāng)經(jīng)歷M后,判斷指標是否滿足精度要求,如果不滿足,則返回(3),繼續(xù)迭代;如果滿足就進入下一步;

訓(xùn)練結(jié)束,將權(quán)值和閾值保存在文件中。這時可以認為各個權(quán)值已經(jīng)達到穩(wěn)定,分類器已經(jīng)形成。再一次進行訓(xùn)練,直接從文件導(dǎo)出權(quán)值和閾值進行訓(xùn)練,不需要進行初始化。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4772

    瀏覽量

    100845
  • 卷積
    +關(guān)注

    關(guān)注

    0

    文章

    95

    瀏覽量

    18524
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    352

    瀏覽量

    22237
收藏 人收藏

    評論

    相關(guān)推薦

    TF之CNN:Tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的嘻嘻哈哈事之詳細攻略

    TF之CNN:Tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的嘻嘻哈哈事之詳細攻略
    發(fā)表于 12-19 17:03

    利用Keras實現(xiàn)四種卷積神經(jīng)網(wǎng)絡(luò)(CNN)可視化

    Keras實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)(CNN)可視化
    發(fā)表于 07-12 11:01

    卷積神經(jīng)網(wǎng)絡(luò)如何使用

    卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
    發(fā)表于 07-17 07:21

    卷積神經(jīng)網(wǎng)絡(luò)原理及發(fā)展過程

    Top100論文導(dǎo)讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅰ)
    發(fā)表于 09-06 17:25

    卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

    【深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
    發(fā)表于 06-14 18:55

    卷積神經(jīng)網(wǎng)絡(luò)CNN圖解

    之前在網(wǎng)上搜索了好多好多關(guān)于CNN的文章,由于網(wǎng)絡(luò)上的文章很多斷章取義或者描述不清晰,看了很多youtobe上面的教學(xué)視頻還是沒有弄懂,最后經(jīng)過痛苦漫長的煎熬之后對于神經(jīng)網(wǎng)絡(luò)卷積有了
    發(fā)表于 11-16 13:18 ?5.7w次閱讀
    <b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>CNN</b>圖解

    卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析-LeNet

    對于神經(jīng)網(wǎng)絡(luò)卷積有了粗淺的了解,關(guān)于CNN 卷積神經(jīng)網(wǎng)絡(luò),需要總結(jié)深入的知識有很多:人工神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 11-16 13:28 ?2764次閱讀
    <b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>CNN</b>架構(gòu)分析-LeNet

    卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析 - LeNet

    之前在網(wǎng)上搜索了好多好多關(guān)于CNN的文章,由于網(wǎng)絡(luò)上的文章很多斷章取義或者描述不清晰,看了很多youtobe上面的教學(xué)視頻還是沒有弄懂,最后經(jīng)過痛苦漫長的煎熬之后對于神經(jīng)網(wǎng)絡(luò)卷積有了
    發(fā)表于 10-02 07:41 ?674次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點 cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點

    卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點 cnn卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 08-21 16:41 ?2999次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

    卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù)
    的頭像 發(fā)表于 08-21 16:49 ?1890次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型

    cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測模型 生成卷積神經(jīng)網(wǎng)
    的頭像 發(fā)表于 08-21 17:11 ?1255次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點是什么

    cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點是什么?
    的頭像 發(fā)表于 08-21 17:15 ?1642次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)模型

    cnn卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積
    的頭像 發(fā)表于 08-21 17:15 ?2112次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)簡介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼

    cnn卷積神經(jīng)網(wǎng)絡(luò)簡介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼 卷積
    的頭像 發(fā)表于 08-21 17:16 ?2701次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)分類有哪些

    卷積神經(jīng)網(wǎng)絡(luò)CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像分類、目標檢測、語義分割等領(lǐng)域。本文將詳細介紹CNN在分類任務(wù)中的應(yīng)用,包括基本結(jié)構(gòu)、關(guān)鍵技術(shù)、常見
    的頭像 發(fā)表于 07-03 09:28 ?636次閱讀