0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點是什么

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 17:15 ? 次閱讀

cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點是什么

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種特殊的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),主要應(yīng)用于圖像處理和計算機(jī)視覺領(lǐng)域,具有非常強(qiáng)的表征能力。在本文中,我們將詳細(xì)介紹CNN的原理和特點。

一、CNN的原理

1. 卷積操作

CNN最顯著的特點是卷積操作。卷積是一種數(shù)學(xué)運算,它通過一個濾波器在原數(shù)據(jù)上滑動,并輸出一個新的特征圖。卷積操作可以提取原始圖像的局部特征信息,同時保留空間關(guān)系和共性特征。與傳統(tǒng)的圖像處理算法相比,卷積運算具有非常強(qiáng)的去噪能力和適應(yīng)性,不僅能夠提升圖像的識別準(zhǔn)確率,還有利于實現(xiàn)圖像處理的自動化。

換句話說,卷積操作可以將原始數(shù)據(jù)映射到一組新的特征空間中,這個過程就像在堆積木塊上堆積的過程一樣,每次堆積只關(guān)注一塊木塊,然后按照一定的規(guī)則堆積起來,并得到一個新的結(jié)構(gòu)。通過不斷堆積,最后得到的結(jié)構(gòu)可以很好地描述原始圖像的特征。

2. 池化操作

除了卷積操作,CNN還引入了池化操作。池化是一種降維操作,它可以減小特征圖的空間大小,同時提高特征圖的穩(wěn)健性。池化有多種方式,常見的有最大值池化和平均值池化。最大值池化操作的主要目的是獲取圖像的主要特征,而平均值池化操作可以有效降低計算復(fù)雜度,從而提高神經(jīng)網(wǎng)絡(luò)的訓(xùn)練速度。

3. 全連接層

CNN的最后一層是全連接層,其輸出結(jié)果是分類器對每個類別的評分。全連接層的主要作用是將之前卷積層和池化層提取到的特征進(jìn)行整合,最終轉(zhuǎn)換為一個分類器輸出結(jié)果。

二、CNN的特點

1. 自動特征學(xué)習(xí)

相對于傳統(tǒng)的圖像處理方法,CNN可以自動學(xué)習(xí)特征。傳統(tǒng)的圖像處理算法通常需要人為定義特征,因此需要大量的人力和時間成本,而CNN的卷積層和池化層可以自動提取圖像的特征,從而大大節(jié)省了人力成本。

2. 空間不變性

CNN的卷積層和池化層具有空間不變性。即在處理圖像時,CNN能夠識別出圖像中相同的特征,而不受它們在圖像中的位置的影響。因此,即使圖像被旋轉(zhuǎn)、平移或縮放,CNN也能夠保持識別準(zhǔn)確性。

3. 模型壓縮

CNN還具有一種模型壓縮的特點,可以實現(xiàn)在保證模型精度的情況下縮小模型尺寸,減少模型運算量。這種特點對于在移動設(shè)備上進(jìn)行圖像處理或其他嵌入式設(shè)備上進(jìn)行計算處理非常有用。

4. 訓(xùn)練數(shù)據(jù)要求高

CNN對訓(xùn)練數(shù)據(jù)的要求非常高。因為它需要在訓(xùn)練數(shù)據(jù)集中學(xué)習(xí)特征,如果訓(xùn)練數(shù)據(jù)集不夠豐富或者包含有偏差的樣本,就會導(dǎo)致訓(xùn)練不充分或者不準(zhǔn)確,從而影響到模型的預(yù)測準(zhǔn)確性。因此,在使用CNN進(jìn)行圖像處理前,需要準(zhǔn)備足夠的訓(xùn)練數(shù)據(jù)集,并進(jìn)行數(shù)據(jù)預(yù)處理和標(biāo)準(zhǔn)化等操作,以提高模型的性能。

5. 非常深的網(wǎng)絡(luò)結(jié)構(gòu)

CNN通常需要很深的網(wǎng)絡(luò)結(jié)構(gòu)來達(dá)到更好的表現(xiàn)。然而,隨著網(wǎng)絡(luò)層數(shù)的增加,訓(xùn)練的難度也會增加,會出現(xiàn)梯度消失和梯度爆炸等問題。因此,深度學(xué)習(xí)的研究者通常會采用一些方法來緩解這種問題,例如使用BN層(Batch normalzation),或者使用殘差連接等技術(shù)。

總之,CNN具有自動特征學(xué)習(xí)、空間不變性、模型壓縮等特點,是近年來圖像處理、計算機(jī)視覺等領(lǐng)域廣泛采用的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)之一。在使用CNN進(jìn)行圖像處理時,需要注意訓(xùn)練數(shù)據(jù)的質(zhì)量和數(shù)量,選擇合適的網(wǎng)絡(luò)結(jié)構(gòu)和優(yōu)化算法,以達(dá)到更好的預(yù)測準(zhǔn)確率。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP
    的頭像 發(fā)表于 02-12 15:53 ?181次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點

    的基本概念、原理、特點以及在不同領(lǐng)域的應(yīng)用情況。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本概念 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)算法,它由多層
    的頭像 發(fā)表于 07-11 14:38 ?1659次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機(jī)器
    的頭像 發(fā)表于 07-10 15:24 ?1863次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的
    的頭像 發(fā)表于 07-04 14:24 ?1619次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-03 10:49 ?779次閱讀

    bp神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工
    的頭像 發(fā)表于 07-03 10:12 ?1575次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)分類方法有哪些

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像分類、目標(biāo)檢測、語義分割等計算機(jī)視覺任務(wù)。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-03 09:40 ?632次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和工作原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-03 09:38 ?1125次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)分類有哪些

    卷積神經(jīng)網(wǎng)絡(luò)CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像分類、目標(biāo)檢測、語義分割等領(lǐng)域。本文將詳細(xì)介紹CNN在分類任務(wù)中的應(yīng)用,包括基本結(jié)構(gòu)、關(guān)鍵技術(shù)、常見
    的頭像 發(fā)表于 07-03 09:28 ?876次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)三大特點是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。CNN具有以下三大
    的頭像 發(fā)表于 07-03 09:26 ?1840次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-03 09:15 ?621次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。 卷積
    的頭像 發(fā)表于 07-02 16:47 ?845次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)cnn模型有哪些

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。 CNN的基本概念 1.1
    的頭像 發(fā)表于 07-02 15:24 ?904次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-02 14:44 ?908次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩
    的頭像 發(fā)表于 07-02 14:24 ?5197次閱讀