電子發(fā)燒友網(wǎng)報(bào)道(文/李彎彎)深度學(xué)習(xí)框架是一種底層開(kāi)發(fā)工具,是集深度學(xué)習(xí)核心訓(xùn)練和推理框架、基礎(chǔ)模型庫(kù)、端到端開(kāi)發(fā)套件、豐富的工具組件于一體的平臺(tái)。 ? 有了深度學(xué)習(xí)框架,工程師在工作時(shí)調(diào)
2022-06-07 00:01:003415 支持 Python 開(kāi)發(fā)環(huán)境的平臺(tái)同時(shí)也能支持 Keras。正式構(gòu)建測(cè)試是在 Python V2.7x 和 V3.5 上運(yùn)行的,但與 Keras 結(jié)合使用的后端需要特定平臺(tái)才能訪問(wèn)支持的圖形處理單元
2018-05-14 04:05:005527 我們繼續(xù)以 NG 課題組提供的 sign 手勢(shì)數(shù)據(jù)集為例,學(xué)習(xí)如何通過(guò)Tensorflow快速搭建起一個(gè)深度學(xué)習(xí)項(xiàng)目。數(shù)據(jù)集標(biāo)簽共有零到五總共 6 類(lèi)標(biāo)簽,示例如下
2018-10-25 08:57:497498 裝。TFlearn:TFlearn 是一個(gè)建立在 TensorFlow 之上的模塊化和透明的深度學(xué)習(xí)庫(kù)。它為 TensorFlow 提供更高級(jí)別的 API,以促進(jìn)和加速實(shí)驗(yàn)。它目前支持最近的大多數(shù)深度
2020-07-28 14:35:06
大約 845 個(gè)貢獻(xiàn)者共提交超過(guò) 17000 次,這本身就是衡量 TensorFlow 流行度和性能的一個(gè)指標(biāo)。圖 1 列出了當(dāng)前流行的深度學(xué)習(xí)框架,從中能夠清楚地看到 TensorFlow
2020-07-22 10:14:37
Tensorflow是Google開(kāi)源的深度學(xué)習(xí)框架,來(lái)自于Google Brain研究項(xiàng)目,在Google第一代分布式機(jī)器學(xué)習(xí)框架DistBelief的基礎(chǔ)上發(fā)展起來(lái)。Tensorflow于
2020-11-23 09:56:04
Tensorflow+Keras入門(mén)——保存和恢復(fù)模型的方法學(xué)習(xí)
2020-06-03 16:30:12
, Tensorflow, Pytorch, Keras, Caffe等),網(wǎng)頁(yè)地址: https://netron.app/
將上一講生成的keras_mnist.h5導(dǎo)入,得到模型結(jié)構(gòu),如下圖:
2
2023-08-18 07:53:59
keras提供兩種搭建模型的方式:
1. 順序模型(也可看做是函數(shù)式模型的一種特殊情況)
2. 函數(shù)式模型
兩種方式優(yōu)點(diǎn)缺點(diǎn)順序模型單輸入單輸出,搭建比較簡(jiǎn)單,是多個(gè)網(wǎng)絡(luò)層的線性堆疊,不發(fā)生
2023-08-18 06:01:56
TensorFlow&TensorFlow-GPU:深度學(xué)習(xí)框架TensorFlow&TensorFlow-GPU的簡(jiǎn)介、安裝、使用方法詳細(xì)攻略
2018-12-25 17:21:10
CPU優(yōu)化深度學(xué)習(xí)框架和函數(shù)庫(kù)機(jī)器學(xué)***器
2021-02-22 06:01:02
設(shè)計(jì)支持深度學(xué)習(xí)功能的系統(tǒng)時(shí)必須考慮這些限制因素。開(kāi)發(fā)人員可以使用前端工具,如Caffe(最初由加州大學(xué)伯克利分校開(kāi)發(fā)的深度學(xué)習(xí)框架)或TensorFlow(谷歌的發(fā)明)來(lái)開(kāi)發(fā)總網(wǎng)絡(luò)、層和相應(yīng)的功能,以及
2019-03-13 06:45:03
Anaconda之tensorflow:深度學(xué)習(xí)之Anaconda下安裝tensorflow正確運(yùn)行之史上最強(qiáng)攻略
2018-12-21 10:40:30
本帖最后由 wcl86 于 2021-5-14 15:26 編輯
概述這個(gè)例子演示了在Vision開(kāi)發(fā)模塊中使用Model Importer API來(lái)使用深度學(xué)習(xí)為缺陷檢查應(yīng)用程序執(zhí)行對(duì)象檢測(cè)
2020-07-29 17:41:31
Mali GPU 支持tensorflow或者caffe等深度學(xué)習(xí)模型嗎? 好像caffe2go和tensorflow lit可以部署到ARM,但不知道是否支持在GPU運(yùn)行?我希望把訓(xùn)練
2022-09-16 14:13:01
最耳熟能詳?shù)木褪?b class="flag-6" style="color: red">TensorFlow,但再稍有了解的,會(huì)知道TensorFlow太過(guò)于底層,實(shí)現(xiàn)深度學(xué)習(xí)的過(guò)程復(fù)雜,但其框架是相當(dāng)好的,Keras相比TensorFlow,具有簡(jiǎn)單易用的特點(diǎn),更適合深度學(xué)習(xí)
2018-06-04 22:32:12
`Nanopi深度學(xué)習(xí)之路這一系列的日記內(nèi)容如下:1. 根據(jù)深度學(xué)習(xí)任務(wù)配置Nanopi2。2. 在Nanopi2上安裝Keras和TensorFlow。3. 在Nanopi2上部署一個(gè)訓(xùn)練好的深度
2018-06-05 17:29:51
“Using TensorFlow backend”說(shuō)明使用的是TensorFlow后端,使用keras必須安裝TensorFlow,Theano,或者 CNTK之一,后端的意思是使用某一底層深度學(xué)習(xí)框架
2018-06-08 19:54:11
Py之TFCudaCudnn:Win10下安裝深度學(xué)習(xí)框架Tensorflow+Cuda+Cudnn最簡(jiǎn)單最快捷最詳細(xì)攻略
2018-12-20 10:35:16
tensorflow還一直保留著他們自己的pb模型格式文件(配置+權(quán)重)。我們直接從Tensorflow官網(wǎng)首頁(yè)的教程Mnist入手,大概簡(jiǎn)單說(shuō)明下如何從Tensorflow.Keras搭建訓(xùn)練模型,然后
2022-03-31 16:23:44
,這比較類(lèi)似于人腦的運(yùn)行方式,獲得更多數(shù)據(jù)后,準(zhǔn)確度也會(huì)越來(lái)越高。TIDL(TI Deep LearningLibrary) 是TI平臺(tái)基于深度學(xué)習(xí)算法的軟件生態(tài)系統(tǒng),可以將一些常見(jiàn)的深度學(xué)習(xí)算法模型
2022-11-03 06:53:11
,caffe2又要被整合到pytorch1.0中去,那么,最好就從pytorch的使用開(kāi)始。具體哪個(gè)深度學(xué)習(xí)的框架更好就是一個(gè)有些太深的知識(shí)坑,搞硬件的最好直接跳過(guò)。2. Pytorch安裝2.1
2018-09-28 17:50:01
TensorFlow 是一個(gè)軟件庫(kù)或框架,由 Google 團(tuán)隊(duì)設(shè)計(jì),以最簡(jiǎn)單的方式實(shí)現(xiàn)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)概念。它結(jié)合了優(yōu)化技術(shù)的計(jì)算代數(shù),便于計(jì)算許多數(shù)學(xué)表達(dá)式。TensorFlow 有以下
重要
2023-10-08 10:04:31
。1、讓沒(méi)有任何python,tensorflow基礎(chǔ)的學(xué)員學(xué)習(xí)到如何搭建深度學(xué)習(xí)訓(xùn)練平臺(tái)。2、學(xué)會(huì)使用imglabel軟件標(biāo)注圖片,弄清楚怎么樣標(biāo)注目標(biāo)3、學(xué)會(huì)利用labview調(diào)用
2021-05-10 22:33:46
安裝labview2019 vision,自帶深度學(xué)習(xí)推理工具,支持tensorflow模型。配置好python下tensorflow環(huán)境配置好object_detection API下載SSD模型
2020-08-16 17:21:38
本帖最后由 wcl86 于 2021-9-9 10:39 編輯
`labview調(diào)用深度學(xué)習(xí)tensorflow模型非常簡(jiǎn)單,效果如下,附上源碼和訓(xùn)練過(guò)的模型:[hide][/hide
2021-06-03 16:38:25
當(dāng)Spark遇上TensorFlow分布式深度學(xué)習(xí)框架原理和實(shí)踐
2019-09-09 08:46:51
近幾年各種深度學(xué)習(xí)框架涌現(xiàn),大家可能很難從眾多的深度學(xué)習(xí)框架中選擇一個(gè)合適的框架進(jìn)行學(xué)習(xí)。對(duì)于深度學(xué)習(xí)的初學(xué)者,或者覺(jué)得Tensorflow,Caffe等框架學(xué)習(xí)困難難以上手的人,可以考慮學(xué)習(xí)
2018-07-17 11:40:31
DL:主流深度學(xué)習(xí)框架多個(gè)方向PK比較
2018-12-26 11:10:18
介紹:人工智能AI到來(lái),工業(yè)上很多學(xué)員不了解C#中l(wèi)abview中如何調(diào)用tensorflow進(jìn)行深度學(xué)習(xí)模型的訓(xùn)練和調(diào)用,推出一整套完整的簡(jiǎn)易學(xué)的視頻課程,使學(xué)員能在沒(méi)有任何深度學(xué)習(xí)理論基礎(chǔ),不懂
2020-11-27 11:19:37
本文使用keras搭建神經(jīng)網(wǎng)絡(luò),實(shí)現(xiàn)基于深度學(xué)習(xí)算法的股票價(jià)格預(yù)測(cè)。本文使用的數(shù)據(jù)來(lái)源為tushare,一個(gè)免費(fèi)開(kāi)源接口;且只取開(kāi)票價(jià)進(jìn)行預(yù)測(cè)。import numpy as npimport
2022-02-08 06:40:03
`【新課上線】tensorflow+目標(biāo)檢測(cè):龍哥教你學(xué)視覺(jué)—LabVIEW深度學(xué)習(xí)教程(強(qiáng)推)課程目標(biāo):1、讓沒(méi)有任何python,tensorflow基礎(chǔ)的學(xué)員學(xué)習(xí)到如何搭建深度學(xué)習(xí)訓(xùn)練平臺(tái)。2
2020-08-10 10:38:12
操作系統(tǒng)。2017年,TensorFlow終于推出了1.0版本,這標(biāo)志著應(yīng)用最廣泛、使用人數(shù)最多的深度學(xué)習(xí)算法TensorFlow推出了正式版。目前TensorFlow最新的版本
2018-09-27 13:56:06
機(jī)器學(xué)習(xí) API(tf.contrib.learn),可以更容易地配置、訓(xùn)練和評(píng)估大量的機(jī)器學(xué)習(xí)模型??梢栽?TensorFlow 上使用高級(jí)深度學(xué)習(xí)庫(kù) Keras。Keras 非常便于用戶(hù)使用,并且
2020-07-28 14:34:04
前段時(shí)間忙著研究Zedboard,這幾天穿插著加入Python的深度學(xué)習(xí)的研究,最近使用谷歌的tensorflow比較多,而且官方出了中文教程,比較給力,下面在Windows10下安裝一下
2018-07-04 13:46:51
`迅為率先在RK3399 開(kāi)發(fā)板上支持了Docker、TensorFlow目標(biāo)檢測(cè)API、OpenCV、Keras、scikit-learn、pytorch和Python等,組成了人工智能深度學(xué)習(xí)
2021-05-21 17:28:46
至少一種主流深度學(xué)習(xí)算法框架(如Caffe, Caffe2, Mxnet,PyTorch, Tensorflow, Keras等);4.有較強(qiáng)的文獻(xiàn)閱讀、算法實(shí)現(xiàn)以及創(chuàng)新能力;5.良好的溝通能力和團(tuán)隊(duì)
2017-12-07 14:34:41
項(xiàng)目組基于深度學(xué)習(xí)實(shí)現(xiàn)了視頻風(fēng)格化和人像摳圖的功能,但這是在PC/服務(wù)端上跑的,現(xiàn)在需要移植到移動(dòng)端,因此需要一個(gè)移動(dòng)端的深度學(xué)習(xí)的計(jì)算框架。 同類(lèi)型的庫(kù) caffe-Android-lib 目前
2017-09-28 20:02:260 本節(jié)對(duì)5個(gè)開(kāi)源深度學(xué)習(xí)框架進(jìn)行對(duì)比研究,主要側(cè)重于3個(gè)維度研究:硬件支持率、速度和準(zhǔn)確率、社區(qū)活躍性。他們分別是:TensorFlow、Caffe、Keras、Torch、DL4j 。 2.3.1
2017-11-15 12:04:003895 學(xué)習(xí) tensorflow,caffe 等深度學(xué)習(xí)框架前,需要先了解一些基礎(chǔ)概念。本文以筆記的形式記錄了一個(gè)零基礎(chǔ)的小白需要先了解的一些基礎(chǔ)概念。 人工智能,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的關(guān)系 人工智能
2017-11-15 15:30:1213266 的熱潮持續(xù)高漲,各種開(kāi)源深度學(xué)習(xí)框架也層出不窮,其中包括TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、DeepLearning4、Lasagne、Neon,等等。然而TensorFlow卻殺出重圍,在關(guān)注度和用戶(hù)數(shù)上都占據(jù)絕對(duì)優(yōu)勢(shì),大有一統(tǒng)江湖之勢(shì)。
2017-11-16 11:52:014286 的。
制作一個(gè)深入學(xué)習(xí)工具包的綜合排名列表是有很大難度的 - 我們羅列出了最具代表性的五個(gè)列表,計(jì)算每個(gè)指標(biāo)的標(biāo)準(zhǔn)化分?jǐn)?shù),得出最終排名。比如,Caffe 在 Github 上的標(biāo)準(zhǔn)評(píng)分為 1,deeplearning4j 則為 0.06。
2017-12-06 11:06:151197 總體來(lái)講keras這個(gè)深度學(xué)習(xí)框架真的很“簡(jiǎn)易”,它體現(xiàn)在可參考的文檔寫(xiě)的比較詳細(xì),不像caffe,裝完以后都得靠技術(shù)博客,keras有它自己的官方文檔(不過(guò)是英文的),這給初學(xué)者提供了很大的學(xué)習(xí)空間。
2017-12-15 08:22:044391 深度學(xué)習(xí)正以迅雷不及掩耳之勢(shì)發(fā)展著,近幾年各種不同的深度學(xué)習(xí)框架也如雨后春筍般紛紛出現(xiàn),在大廠的支持下這些框架在深度學(xué)習(xí)的舞臺(tái)上華麗登場(chǎng)各顯神通。
2018-01-05 15:12:588402 Mathworks R2017b升級(jí)版,加強(qiáng)深度學(xué)習(xí)轉(zhuǎn)換CUDA代碼推斷速度再提升,據(jù)悉比 TensorFlow 的性能高 7 倍,比 Caffe2 的性能高 4.5 倍。
2018-01-15 13:46:151756 TensorFlow是谷歌的第二代開(kāi)源的人工智能學(xué)習(xí)系統(tǒng),是用來(lái)實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的內(nèi)置框架學(xué)習(xí)軟件庫(kù)。目前,TensorFlow機(jī)器學(xué)習(xí)已經(jīng)成為了一個(gè)研究熱點(diǎn)。由基本的機(jī)器學(xué)習(xí)算法入手,簡(jiǎn)析機(jī)器學(xué)習(xí)算法
2018-04-04 14:39:006873 Keras的開(kāi)發(fā)設(shè)計(jì)注重用戶(hù)友好,因而某種意義上它更加pythonic。模塊化是Keras的另一個(gè)優(yōu)雅的設(shè)計(jì)指導(dǎo)原則。Keras中的任何東西都可以表示為模塊,用戶(hù)可以根據(jù)需要將其進(jìn)一步組合。
2018-03-26 11:11:517157 得到的總排名是:TensorFlow 5.9%,Caffe 5.4%,Theano 3.2%,Keras 2.3%,Torch 1.6%,PyTorch 1%,其他0.5%
2018-04-02 16:46:4111099 Caffe是一個(gè)深度學(xué)習(xí)框架,具有表達(dá)力強(qiáng)、速度快和模塊化的思想,由伯克利視覺(jué)學(xué)習(xí)中心(BVLC)和社區(qū)貢獻(xiàn)
2018-04-29 16:23:003953 4月6日消息(美國(guó)硅谷當(dāng)?shù)貢r(shí)間4月5日)今日,在2016年GPU全球技術(shù)大會(huì)(GTC16)上,浪潮開(kāi)源發(fā)布深度學(xué)習(xí)計(jì)算框架Caffe-MPI。同時(shí),浪潮還表示將設(shè)立深度學(xué)習(xí)計(jì)劃,具體從硬件設(shè)施、系統(tǒng)優(yōu)化與并行框架三方面入手。
2018-05-18 18:03:001432 在這篇文章中,我想向大家介紹推動(dòng)深度學(xué)習(xí)發(fā)展的5個(gè)主力框架。這些框架使數(shù)據(jù)科學(xué)家和工程師更容易為復(fù)雜問(wèn)題構(gòu)建深度學(xué)習(xí)解決方案,并執(zhí)行更復(fù)雜的任務(wù)。這只是眾多開(kāi)源框架中的一小部分,由不同的科技巨頭支持,并相互推動(dòng)更快創(chuàng)新。
2018-05-04 10:30:003747 Python軟件基金會(huì)成員(Contibuting Member)Vihar Kurama簡(jiǎn)明扼要地介紹了深度學(xué)習(xí)的基本概念,同時(shí)提供了一個(gè)基于Keras搭建的深度學(xué)習(xí)網(wǎng)絡(luò)示例。
2018-06-06 11:21:497902 MACE,是指小米公司自研的移動(dòng)端深度學(xué)習(xí)框架Mobile AI Compute Engine。2017年12月,這一深度學(xué)習(xí)框架就在小米公司內(nèi)部正式發(fā)布了。
2018-07-26 14:06:463502 在所有事情開(kāi)始之前,要把相關(guān)的環(huán)境設(shè)置好。首先你要有OpenCV(對(duì)于視覺(jué)工程師方向),至少一個(gè)深度學(xué)習(xí)框架(TensorFlow, Kaffe, Keras等,新手推薦用Keras),Ubuntu。還要掌握C++, Python, 和基本的機(jī)器學(xué)習(xí)知識(shí)。
2018-08-20 09:34:004506 In this talk, we analyze the performance characteristics of Caffe* and TensorFlow* on an Intel? Xeon Phi? processor x200.
2018-10-19 07:30:002420 Keras 依然作為一個(gè)庫(kù),與 TensorFlow 分開(kāi),進(jìn)行獨(dú)立操作,所以仍存在未來(lái)兩者會(huì)分開(kāi)的可能性;然而,我們知道 Google 官方同時(shí)支持 Keras 和 TensorFlow,分開(kāi)似乎又是極不可能發(fā)生的。
2018-10-11 10:05:5821151 作為一個(gè)庫(kù),Keras 仍然可以單獨(dú)使用,因此未來(lái)兩者可能會(huì)分道揚(yáng)鑣。不過(guò),因?yàn)楣雀韫俜街С?Keras 和 TensorFlow,所以似乎不太可能出現(xiàn)這種情況。
2018-10-31 09:40:0810721 幾天前,Tensorflow剛度過(guò)自己的3歲生日,作為當(dāng)前最受歡迎的機(jī)器學(xué)習(xí)框架,Tensorflow在這個(gè)寶座上已經(jīng)盤(pán)踞了近三年。無(wú)論是成熟的Keras,還是風(fēng)頭正盛的pytorch,它的地位似乎
2018-11-17 11:33:592979 Keras有以下幾大關(guān)鍵優(yōu)點(diǎn):用戶(hù)友好、模塊化、可組合、容易擴(kuò)展,既適合新手,也適合專(zhuān)家。這些優(yōu)點(diǎn)加起來(lái)??梢宰?b class="flag-6" style="color: red">學(xué)習(xí)、研究、開(kāi)發(fā)、部署的工作流更加容易,效率更高。通過(guò)將 Keras 構(gòu)建
2018-12-12 09:55:048229 也是 TensorFlow 集成 Keras 的主要設(shè)計(jì)目標(biāo),即讓用戶(hù)能夠選擇對(duì)自己更有用處的 Keras 組件,而無(wú)需采用整個(gè)框架。
2018-12-18 13:38:112577 框架:fast.ai使用Pytorch作用教學(xué)工具。但是這種東西屬于一通百通,基本上你一旦掌握了套路,接下來(lái)用TensorFlow/Keras、CNTX、MXNet或者其他深度學(xué)習(xí)庫(kù)都不成大問(wèn)題。
2019-01-28 08:59:002206 TensorFlow 1.x以靜態(tài)圖為主,網(wǎng)上主流的TF代碼編寫(xiě)主要是面向過(guò)程的(函數(shù)為主),在引入tf.keras之后,TensorFlow官方就開(kāi)始推薦tf.keras里各種面向?qū)ο蟮木幊田L(fēng)格,從層到模型都是類(lèi)和對(duì)象,大大簡(jiǎn)化了代碼的簡(jiǎn)潔性和復(fù)用性,也間接地提供了TF開(kāi)發(fā)的規(guī)范。
2019-03-29 11:28:553907 我喜歡TensorFlow的原因有兩點(diǎn):它完全是開(kāi)源的,并且有出色的社區(qū)支持。TensorFlow為大多數(shù)復(fù)雜的深度學(xué)習(xí)模型預(yù)先編寫(xiě)好了代碼,比如遞歸神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)。
2019-04-24 17:26:354576 開(kāi)源的深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)正步入成熟,而現(xiàn)在有許多框架具備為個(gè)性化方案提供先進(jìn)的機(jī)器學(xué)習(xí)和人工智能的能力。
2019-07-08 10:31:302056 僅僅一年時(shí)間,PyTorch在學(xué)術(shù)圈中地位飆升,論文提及數(shù)量猛增194%,從第2018年第4位升至2019年第2位!而Keras則排名第三。Caffe不增反降,排名第四。不過(guò)在企業(yè)當(dāng)中,Keras仍力壓PyTorch。
2019-07-28 11:22:353493 速度使Caffe完美的用于研究實(shí)驗(yàn)和工業(yè)開(kāi)發(fā)。使用一個(gè)NVIDIA K40 GPU Caffe每天可以處理超過(guò)60M的圖像。推理過(guò)程為1ms/一幅圖像,而學(xué)習(xí)過(guò)程為4ms/一幅圖像。我們相信Caffe是現(xiàn)在可使用最快的ConvNet應(yīng)用。
2019-08-09 08:59:543610 如果你需要深度學(xué)習(xí)模型,那么 PyTorch 和 TensorFlow 都是不錯(cuò)的選擇。
并非每個(gè)回歸或分類(lèi)問(wèn)題都需要通過(guò)深度學(xué)習(xí)來(lái)解決。甚至可以說(shuō),并非每個(gè)回歸或分類(lèi)問(wèn)題都需要通過(guò)機(jī)器學(xué)習(xí)來(lái)解決。畢竟,許多數(shù)據(jù)集可以用解析方法或簡(jiǎn)單的統(tǒng)計(jì)過(guò)程進(jìn)行建模。
2019-09-14 10:57:003181 本書(shū)共分 5 方面內(nèi)容 :基礎(chǔ)知識(shí)、關(guān)鍵模塊、算法模型、內(nèi)核揭秘、生態(tài)發(fā)展。前兩方面由淺入深地介紹了 TensorFlow 平臺(tái),算法模型方面依托 TensorFlow 講解深度學(xué)習(xí)模型,內(nèi)核揭秘
2019-12-12 08:00:004 清華大學(xué)計(jì)算機(jī)系胡事民教授研究團(tuán)隊(duì)提出了一個(gè)全新的深度學(xué)習(xí)框架——計(jì)圖(Jittor)。Jittor是一個(gè)采用元算子表達(dá)神經(jīng)網(wǎng)絡(luò)計(jì)算單元、完全基于動(dòng)態(tài)編譯(Just-in-Time)的深度學(xué)習(xí)框架。
2020-03-26 15:50:296456 TensorFlow、PyTorch 這樣龐大的深度學(xué)習(xí)框架。 ? 除了這類(lèi)主流框架之外,開(kāi)發(fā)者們也會(huì)開(kāi)源一些小而精的框架或者庫(kù)。 ? ? ?
2020-12-16 09:36:563883 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),并且運(yùn)用各種深度學(xué)習(xí)算法訓(xùn)練網(wǎng)絡(luò)參數(shù),進(jìn)而解決各種任務(wù)。 本文從PyTorch環(huán)境配置開(kāi)始。PyTorch是一種Python接口的深度學(xué)習(xí)框架,使用靈活,學(xué)習(xí)方便。還有其他主流的深度學(xué)習(xí)框架,例如Caffe,TensorFlow,CNTK等等,各有千秋。筆者認(rèn)
2021-02-16 15:15:002206 回顧深度學(xué)習(xí)框架的演變,我們可以清楚地看到深度學(xué)習(xí)框架和深度學(xué)習(xí)算法之間的緊密耦合關(guān)系。這種相互依賴(lài)的良性循環(huán)推動(dòng)了深度學(xué)習(xí)框架和工具的快速發(fā)展。
2021-01-21 13:46:552476 教你使用TensorFlow建立深度學(xué)習(xí)和機(jī)器學(xué)習(xí)網(wǎng)絡(luò)。
2021-03-26 09:44:0218 在深度學(xué)習(xí)領(lǐng)域,PyTorch、TensorFlow 等主流框架,毫無(wú)疑問(wèn)占據(jù)絕大部分市場(chǎng)份額,就連百度這樣級(jí)別的公司,也是花費(fèi)了大量人力物力,堪堪將 PaddlePaddle 推入主流。 在這
2021-04-09 15:11:392113 自深度學(xué)習(xí)重新獲得公認(rèn)以來(lái),許多機(jī)器學(xué)習(xí)框架層出不窮,爭(zhēng)相成為研究人員以及行業(yè)從業(yè)人員的新寵。從早期的學(xué)術(shù)成果 Caffe、Theano,到獲得龐大工業(yè)支持的 PyTorch、TensorFlow
2021-07-09 10:33:251284 服務(wù)器上的CNN訓(xùn)練框架很多,如tensorflow、pytorch、keras、caffe等等。該類(lèi)框架在PC及服務(wù)器中的顯卡、高性能CPU中都有不錯(cuò)的性能表現(xiàn)...
2022-02-07 11:53:080 導(dǎo)讀:近幾年隨著深度學(xué)習(xí)算法的發(fā)展,出現(xiàn)了許多深度學(xué)習(xí)框架。這些框架各有所長(zhǎng),各具特色。常用的開(kāi)源框架有TensorFlow、Keras、Caffe、PyTorch、Theano、CNTK
2022-04-26 18:45:437252 Keras 提供了一個(gè)高級(jí)環(huán)境,在其 Sequential 模型中向神經(jīng)網(wǎng)絡(luò)添加一層的代碼量可以縮減到一行,編譯和訓(xùn)練模型也分別只需一個(gè)函數(shù)調(diào)用。如果有需要,Keras 也允許你通過(guò)其 Model 或函數(shù)式 API 接觸較低層上的代碼。
2022-07-05 15:31:38797 深度學(xué)習(xí)算法大多通過(guò)計(jì)算數(shù)據(jù)流圖來(lái)完成神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)過(guò)程。一些框架(例如CNTK,Caffe2,Theano和TensorFlow)使用靜態(tài)圖形,而其他框架(例如PyTorch和Chainer)使用動(dòng)態(tài)圖形。
2022-10-13 11:29:231480 TensorFlow命名源于其運(yùn)行原理,即“讓張量(Tensor)流動(dòng)起來(lái)(Flow)”,這是深度學(xué)習(xí)處理數(shù)據(jù)的核心特征。TensorFlow顯示了張量從數(shù)據(jù)流圖的一端流動(dòng)到另一端的整個(gè)計(jì)算過(guò)程,生動(dòng)形象地描述了復(fù)雜數(shù)據(jù)結(jié)構(gòu)在人工神經(jīng)網(wǎng)絡(luò)中的流動(dòng)、傳輸、分析和處理模式。
2022-11-21 10:21:301322 TensorFlow和PyTorch是兩個(gè)最受歡迎的開(kāi)源深度學(xué)習(xí)框架,這兩個(gè)框架都為構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型提供了廣泛的功能,并已被研發(fā)社區(qū)廣泛采用。但是作為用戶(hù),我們一直想知道哪種框架最適合我們自己
2023-01-14 11:53:122420 在 AI 技術(shù)興起后,深度學(xué)習(xí)框架 PyTorch 和 TensorFlow 兩大陣營(yíng)似乎也爆發(fā)了類(lèi)似的「戰(zhàn)爭(zhēng)」。這兩個(gè)陣營(yíng)背后都有大量的支持者,并且他們都有充足的理由來(lái)說(shuō)明為什么他們所喜歡的框架是最好的。
2023-02-02 10:28:14825 Tensorflow: 谷歌開(kāi)源的向更加易用發(fā)展的主流學(xué)習(xí)框架
2023-03-15 10:17:25341 深度學(xué)習(xí)框架pytorch入門(mén)與實(shí)踐 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)中的一個(gè)分支,它使用多層神經(jīng)網(wǎng)絡(luò)對(duì)大量數(shù)據(jù)進(jìn)行學(xué)習(xí),以實(shí)現(xiàn)人工智能的目標(biāo)。在實(shí)現(xiàn)深度學(xué)習(xí)的過(guò)程中,選擇一個(gè)適用的開(kāi)發(fā)框架是非常關(guān)鍵
2023-08-17 16:03:061075 深度學(xué)習(xí)框架是什么?深度學(xué)習(xí)框架有哪些?? 深度學(xué)習(xí)框架是一種軟件工具,它可以幫助開(kāi)發(fā)者輕松快速地構(gòu)建和訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型。與手動(dòng)編寫(xiě)代碼相比,深度學(xué)習(xí)框架可以大大減少開(kāi)發(fā)和調(diào)試的時(shí)間和精力,并提
2023-08-17 16:03:091586 深度學(xué)習(xí)框架區(qū)分訓(xùn)練還是推理嗎 深度學(xué)習(xí)框架是一個(gè)非常重要的技術(shù),它們能夠加速深度學(xué)習(xí)的開(kāi)發(fā)與部署過(guò)程。在深度學(xué)習(xí)中,我們通常需要進(jìn)行兩個(gè)關(guān)鍵的任務(wù),即訓(xùn)練和推理。訓(xùn)練是指使用訓(xùn)練數(shù)據(jù)訓(xùn)練神經(jīng)網(wǎng)絡(luò)
2023-08-17 16:03:11905 深度學(xué)習(xí)框架的作用是什么 深度學(xué)習(xí)是一種計(jì)算機(jī)技術(shù),它利用人工神經(jīng)網(wǎng)絡(luò)來(lái)模擬人類(lèi)的學(xué)習(xí)過(guò)程。由于其高度的精確性和精度,深度學(xué)習(xí)已成為現(xiàn)代計(jì)算機(jī)科學(xué)領(lǐng)域的重要工具。然而,要在深度學(xué)習(xí)中實(shí)現(xiàn)高度復(fù)雜
2023-08-17 16:10:571071 深度學(xué)習(xí)框架pytorch介紹 PyTorch是由Facebook創(chuàng)建的開(kāi)源機(jī)器學(xué)習(xí)框架,其中TensorFlow是完全基于數(shù)據(jù)流圖的。它是一個(gè)使用動(dòng)態(tài)計(jì)算圖的框架,允許用戶(hù)更靈活地定義和修改模型
2023-08-17 16:10:59992 深度學(xué)習(xí)框架tensorflow介紹 深度學(xué)習(xí)框架TensorFlow簡(jiǎn)介 深度學(xué)習(xí)框架TensorFlow由Google開(kāi)發(fā),是一個(gè)開(kāi)放源代碼的深度學(xué)習(xí)框架,可用于構(gòu)建人工智能應(yīng)用程序
2023-08-17 16:11:021282 常重要的。本文將提供一些選擇建議,以及如何決定使用哪種框架和算法。 首先,選擇框架。目前,深度學(xué)習(xí)領(lǐng)域最流行和使用最廣泛的框架有TensorFlow、PyTorch、Keras和Caffe。以下是每個(gè)框架的優(yōu)缺點(diǎn): TensorFlow:Google開(kāi)發(fā)的一個(gè)框架,支持大規(guī)
2023-08-17 16:11:05342 深度學(xué)習(xí)算法庫(kù)框架的相關(guān)知識(shí)點(diǎn)以及它們之間的比較。 1. Tensorflow Tensorflow是Google家的深度學(xué)習(xí)框架,已經(jīng)成為深度學(xué)習(xí)領(lǐng)域的“事實(shí)標(biāo)準(zhǔn)”。它是個(gè)非常強(qiáng)大的庫(kù),主要用于構(gòu)建和訓(xùn)練神經(jīng)網(wǎng)絡(luò)。Tensorflow支持多種編程語(yǔ)言,例如
2023-08-17 16:11:07411 的深度學(xué)習(xí)框架,并對(duì)它們進(jìn)行對(duì)比。 1. TensorFlow TensorFlow是由Google Brain團(tuán)隊(duì)開(kāi)發(fā)的一款深度學(xué)習(xí)框架,目前是深度學(xué)習(xí)領(lǐng)域中最常用的框架之一。 TensorFlow 主要的優(yōu)勢(shì)是其可擴(kuò)展性和豐富的社區(qū)支持,擁有非常強(qiáng)大的計(jì)算圖優(yōu)化、自動(dòng)微分
2023-08-17 16:11:13458 深度學(xué)習(xí)框架連接技術(shù) 深度學(xué)習(xí)框架是一個(gè)能夠幫助機(jī)器學(xué)習(xí)和人工智能開(kāi)發(fā)人員輕松進(jìn)行模型訓(xùn)練、優(yōu)化及評(píng)估的軟件庫(kù)。深度學(xué)習(xí)框架連接技術(shù)則是需要使用深度學(xué)習(xí)模型的應(yīng)用程序必不可少的技術(shù),通過(guò)連接技術(shù)
2023-08-17 16:11:16443 深度學(xué)習(xí)cntk框架介紹? 深度學(xué)習(xí)是最近幾年來(lái)非常熱門(mén)的話題,它正在徹底改變我們生活和工作的方式。隨著越來(lái)越多的創(chuàng)新和發(fā)展,人工智能和機(jī)器學(xué)習(xí)的應(yīng)用范圍正在大大擴(kuò)展。而對(duì)于深度學(xué)習(xí)這個(gè)領(lǐng)域來(lái)說(shuō)
2023-08-17 16:11:23881 深度學(xué)習(xí)框架和深度學(xué)習(xí)算法教程 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)領(lǐng)域中的一個(gè)重要分支,多年來(lái)深度學(xué)習(xí)一直在各個(gè)領(lǐng)域的應(yīng)用中發(fā)揮著極其重要的作用,成為了人工智能技術(shù)的重要組成部分。許多深度學(xué)習(xí)算法和框架提供
2023-08-17 16:11:26637 最常見(jiàn)的深度學(xué)習(xí)框架應(yīng)該是TensorFlow、Pytorch、Keras,但是這些框架在面向大規(guī)模模型的時(shí)候都不是很方便。 比如Pytorch的分布式并行計(jì)算框架(Distributed Data
2023-10-30 10:09:45950 TensorFlow和Keras最常見(jiàn)的用途之一是圖像識(shí)別/分類(lèi)。通過(guò)本文,您將了解如何使用Keras達(dá)到這一目的。定義如果您不了解圖像識(shí)別的基本概念,將很難完全理解本文的內(nèi)容。因此在正文開(kāi)始之前
2024-01-13 08:27:42328
評(píng)論
查看更多