0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用PyTorch、TensorFlow框架掌握深度學(xué)習(xí)

新機(jī)器視覺 ? 來(lái)源:CSDN ? 作者:Martin Heller ? 2022-07-05 15:31 ? 次閱讀

如果你需要深度學(xué)習(xí)模型,那么 PyTorch 和 TensorFlow 都是不錯(cuò)的選擇。

并非每個(gè)回歸或分類問題都需要通過深度學(xué)習(xí)來(lái)解決。甚至可以說(shuō),并非每個(gè)回歸或分類問題都需要通過機(jī)器學(xué)習(xí)來(lái)解決。畢竟,許多數(shù)據(jù)集可以用解析方法或簡(jiǎn)單的統(tǒng)計(jì)過程進(jìn)行建模。

另一方面,在某些情況下,深度學(xué)習(xí)或深度遷移學(xué)習(xí)可以幫助你訓(xùn)練更準(zhǔn)確的模型。在這些情況下,你可以考慮使用 PyTorch 和 TensorFlow ,特別是如果你所需的訓(xùn)練模型與其中一個(gè)框架模型庫(kù)中的模型類似。

【PyTorch】

PyTorch 建立在舊版的 Torch 和 Caffe2 框架之上。如其名所示,PyTorch采用了腳本語(yǔ)言 Python,并利用改版后的Torch C/CUDA作為后端。PyTorch 項(xiàng)目還融入了 Caffe2 的生產(chǎn)功能。

PyTorch 被稱為“擁有強(qiáng)大 GPU 加速功能的 Python 版 Tensor 和動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)?!边@意味著什么?

Tensor(張量)是一種物理學(xué)和工程學(xué)中廣泛使用的數(shù)學(xué)結(jié)構(gòu)。2 階的 Tensor 是一種特殊的矩陣;而對(duì)向量和張量取內(nèi)積就可以得到另一個(gè)擁有新長(zhǎng)度和新方向的向量。TensorFlow 這個(gè)名字就來(lái)自張量在其網(wǎng)絡(luò)模型中流動(dòng)的方式。NumPy 也用到了 Tensor,名為 ndarray 。

GPU 加速是大多數(shù)現(xiàn)代深度神經(jīng)網(wǎng)絡(luò)框架的基礎(chǔ)。動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)是一種特殊的神經(jīng)網(wǎng)絡(luò),每次迭代都會(huì)發(fā)生變化,例如,PyTorch 模型可以在訓(xùn)練期間通過添加和刪除隱藏層,來(lái)提高其準(zhǔn)確性和通用性。

PyTorch 會(huì)在每個(gè)迭代中實(shí)時(shí)重建計(jì)算圖。相比之下,在默認(rèn)情況下TensorFlow 會(huì)創(chuàng)建一個(gè)計(jì)算圖,優(yōu)化圖代碼以提高性能,然后訓(xùn)練模型。

雖然急切執(zhí)行模式在 TensorFlow 中剛剛出現(xiàn),但其是 PyTorch 唯一的運(yùn)行方式:API 在被調(diào)用時(shí)會(huì)立即執(zhí)行,而不會(huì)被添加到計(jì)算圖稍后再運(yùn)行。這樣可能看起來(lái)計(jì)算效率會(huì)低一些,但是 PyTorch 設(shè)計(jì)的工作方式就是如此,而且實(shí)際上在訓(xùn)練或預(yù)測(cè)速度方面并不遜色。

PyTorch 通過集成加速庫(kù),比如英特爾 MKL、Nvidia cuDNN 和 NCCL 等,最大限度地提升速度。其核心CPU、GPU Tensor和神經(jīng)網(wǎng)絡(luò)后端TH(Torch)、THC(Torch CUDA)、THNN(Torch神經(jīng)網(wǎng)絡(luò))和THCUNN(Torch CUDA神經(jīng)網(wǎng)絡(luò))等,都是使用 C99 API 編寫的單獨(dú)庫(kù)。同時(shí),PyTorch 并不是整體式 C++ 框架的 Python 綁定。其目的是與Python 深度集成,并允許使用其他 Python 庫(kù)。

【Fast.ai與fastai庫(kù)】

Fast.ai 是一家小公司,他們通過為編程人員提供免費(fèi)課程、軟件庫(kù)、尖端研究和社區(qū),降低深度學(xué)習(xí)的難度,并吸引更多各種背景的人。

fastai 庫(kù)基于 PyTorch,通過現(xiàn)代化的最佳實(shí)踐簡(jiǎn)化了快速準(zhǔn)確的神經(jīng)網(wǎng)絡(luò)訓(xùn)練。它基于對(duì) Fast.ai 深度學(xué)習(xí)最佳實(shí)踐的研究,提供了包括視覺、文本、表格和協(xié)作(協(xié)作過濾)模型在內(nèi)的“開箱即用”支持。

fastai 庫(kù)與 PyTorch 的關(guān)系非常類似于 Keras 與 TensorFlow 。但明顯的區(qū)別在于,PyTorch 沒有正式支持 fastai 。

【TensorFlow】

TensorFlow 是眾多優(yōu)秀的機(jī)器學(xué)習(xí)和深度學(xué)習(xí)框架中最成熟的一個(gè),也是研究論文中引用最多的一個(gè)(即使不算來(lái)自谷歌員工的引用也是第一),而且在生產(chǎn)中的使用效果也很好。它可能不是最容易學(xué)習(xí)的框架,但隨著 TensorFlow 2的到來(lái),TensorFlow 的門檻也沒有 2016 年那般高了。TensorFlow 是許多 Google 服務(wù)的基礎(chǔ)。

TensorFlow 2.0 官網(wǎng)對(duì)該項(xiàng)目的描述為:“端到端的開源機(jī)器學(xué)習(xí)平臺(tái)。”,谷歌通過“平臺(tái)”提供了一個(gè)包含工具、庫(kù)以及社區(qū)資源的全方位生態(tài)系統(tǒng),研究人員可以利用這個(gè)平臺(tái)“推動(dòng)機(jī)器學(xué)習(xí)達(dá)到最高水準(zhǔn)”,而開發(fā)人員則可以利用這個(gè)平臺(tái)輕松構(gòu)建和部署基于 AI 的應(yīng)用程序。

TensorFlow 2.0 有四個(gè)主要部分組成:

TensorFlow 核心,一個(gè)用于開發(fā)和培訓(xùn)機(jī)器學(xué)習(xí)模型的開源庫(kù);

TensorFlow.js,一個(gè)在 Web 瀏覽器和 Node.js 上訓(xùn)練和部署模型的 JavaScript庫(kù);

TensorFlow Lite,一個(gè)輕量級(jí)庫(kù),用于在移動(dòng)和嵌入式設(shè)備上部署模型;

TensorFlow Extended,是一個(gè)端到端平臺(tái),用于在大型生產(chǎn)環(huán)境中準(zhǔn)備數(shù)據(jù)、培訓(xùn)、驗(yàn)證和部署模型。

TensorFlow 2.0 的重點(diǎn)放在了簡(jiǎn)單性和易用性上,其這個(gè)版本擁有一系列的新功能,包括急切執(zhí)行、直觀的高級(jí) API 以及可以在任何平臺(tái)上構(gòu)建模型等。急切執(zhí)行意味著 TensorFlow 代碼定義好就可以運(yùn)行,而 TensorFlow 最初的模式需要將節(jié)點(diǎn)和邊添加到計(jì)算圖中,稍后再在會(huì)話中運(yùn)行。

高效地使用 TensorFlow 2.0 方法是,使用高級(jí)的 tf.keras API(而不是舊的低級(jí) AP,這樣可以大大減少需要編寫的代碼量。只需要使用一行代碼就可以構(gòu)建 Keras 神經(jīng)網(wǎng)絡(luò)中的一層,如果利用循環(huán)結(jié)構(gòu),則可以進(jìn)一步減少代碼量。

TensorFlow.js 是一個(gè)利用 JavaScript 開發(fā)和訓(xùn)練機(jī)器學(xué)習(xí)模型,并在瀏覽器或 Node.js 中部署模型的庫(kù)。在 TensorFlow.js、ml5.js 之上還有一個(gè)高級(jí)庫(kù),它隱藏了張量和優(yōu)化器的復(fù)雜性。

TensorFlow.js 可以通過瀏覽器支持移動(dòng)設(shè)備和桌面設(shè)備。如果你的瀏覽器支持 WebGL 著色器 API,TensorFlow.js 可以利用它們發(fā)揮 GPU 的優(yōu)勢(shì)。與CPU 后端相比,這可以為你提供高達(dá) 100 倍的加速。在擁有 GPU 的計(jì)算機(jī)上,TensorFlow.js 可以非??焖俚卦跒g覽器中運(yùn)行。

TensorFlow Lite 是一個(gè)用于移動(dòng)設(shè)備的開源深度學(xué)習(xí)框架。目前它可以為iOSARM64 和 Raspberry Pi 構(gòu)建模型。TensorFlow Lite 有兩個(gè)主要組件:解釋器和轉(zhuǎn)換器。解釋器可以在許多不同的硬件類型上運(yùn)行經(jīng)過特別優(yōu)化的模型。轉(zhuǎn)換器可以將 TensorFlow 模型轉(zhuǎn)換為高效的形式供解釋器使用,還可引入優(yōu)化以縮小可執(zhí)行文件大小并提高性能。

TensorFlow Extended(TFX)是用于部署生產(chǎn)機(jī)器學(xué)習(xí)管道的端到端平臺(tái)。在你訓(xùn)練好一個(gè)模型后,就需要考慮這方面的工作了。管道包括數(shù)據(jù)驗(yàn)證、功能工程、建模、模型評(píng)估、服務(wù)推斷以及管理在線、原生移動(dòng)和 JavaScript 目標(biāo)的部署。

【Keras】

Keras 是用于構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的高級(jí)前端規(guī)范和實(shí)現(xiàn)。Keras 支持三種后端深度學(xué)習(xí)框架:TensorFlow、CNTK 和 Theano。目前亞馬遜正在全力為Keras 開發(fā) MXNet 后端。你也可以使用 PlaidML(一個(gè)獨(dú)立的項(xiàng)目)作為Keras 的后端,利用 PlaidML 的 OpenCL 支持所有 GPU 的優(yōu)勢(shì)。

TensorFlow是Keras的默認(rèn)后端,在很多情況下我們也推薦使用TensorFlow,包括通過 CUDA 和 cuDNN 在 Nvidia 硬件上實(shí)現(xiàn) GPU 加速,以及利用 Google Cloud 中的 Tensor 處理單元加速等。Keras 除了可以單獨(dú)安裝之外,TensorFlow 還包含一個(gè)內(nèi)部 tf.keras 類。如上所述,這是TensorFlow 的首選高級(jí)前端。

Keras 提供了一個(gè)高級(jí)環(huán)境,在其 Sequential 模型中向神經(jīng)網(wǎng)絡(luò)添加一層的代碼量可以縮減到一行,編譯和訓(xùn)練模型也分別只需一個(gè)函數(shù)調(diào)用。如果有需要,Keras 也允許你通過其 Model 或函數(shù)式 API 接觸較低層上的代碼。

你還可以利用 Keras 的子類 keras.Model 進(jìn)一步深入,一直到 Python 代碼級(jí)別,直到找到你喜歡的功能 API 。另外,它還有 Scikit-learn API,因此你可以利用 Scikit-learn 網(wǎng)格搜索在 Keras 模型中執(zhí)行超參數(shù)優(yōu)化。

【深度學(xué)習(xí)與遷移學(xué)習(xí)】

PyTorch 和 TensorFlow 都支持深度學(xué)習(xí)和遷移學(xué)習(xí)。遷移學(xué)習(xí)(有時(shí)稱為自定義機(jī)器學(xué)習(xí))可以從預(yù)先訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型開始,只需為你的數(shù)據(jù)定制最終層即可。

從頭開始訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)非常耗時(shí),并且需要大量標(biāo)記數(shù)據(jù)。遷移學(xué)習(xí)花費(fèi)的時(shí)間更少,而且需要的新標(biāo)記樣本更少,但只有在模型已預(yù)先訓(xùn)練好的情況下,你才可以使用遷移學(xué)習(xí)。幸運(yùn)的是,所有主流的深度學(xué)習(xí)框架都提供了某種形式的模型庫(kù)供你挑選模型。

圖像分類中使用的卷積神經(jīng)網(wǎng)絡(luò)(也稱為 ConvNets 或 CNN )是遷移學(xué)習(xí)的代表。PyTorch 和 TensorFlow 都提供了有關(guān)如何使用遷移學(xué)習(xí)來(lái)訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)的教程。TensorFlow 的遷移學(xué)習(xí)教程演示了如何使用遷移學(xué)習(xí)提取和微調(diào)特征。PyTorch 的遷移學(xué)習(xí)教程也演示了相同的兩種方法。

以下是這些筆記中提到的一個(gè)關(guān)鍵點(diǎn):

實(shí)際上,很少有人從頭開始訓(xùn)練整個(gè)卷積網(wǎng)絡(luò)(利用隨機(jī)的初始化),因?yàn)槟愫茈y擁有足夠大的數(shù)據(jù)集。相反,一般人們會(huì)在非常大的數(shù)據(jù)集(例如ImageNet,其中包含 1,000 個(gè)類別的 120 萬(wàn)個(gè)圖像)上預(yù)先訓(xùn)練ConvNet,然后以 ConvNet 為起點(diǎn)或通過 ConvNet 提取感興趣的特征。

【如何選擇深度學(xué)習(xí)框架】

在 PC 和 Mac 出現(xiàn)的早期,人們經(jīng)常會(huì)問我應(yīng)該買哪個(gè)。其實(shí),這個(gè)問題沒有正確的答案,因?yàn)檫@個(gè)問題本身就是一個(gè)錯(cuò)誤,或者我應(yīng)該說(shuō)“那要看你想用這臺(tái)電腦干什么”,但一般在我問他們幾個(gè)問題后,他們就能找到自己的答案,比如“你想用這臺(tái)電腦干什么?”,或者“你有什么不可或缺的應(yīng)用嗎?”

同樣,“我應(yīng)該使用哪種深度學(xué)習(xí)框架?”也算不上一個(gè)真正的問題。這個(gè)問題同樣取決于你自己,比如首先想一想“你想用你的模型干什么?”,然后再深入研究你可以用于訓(xùn)練的數(shù)據(jù)類型。

如果你不熟悉深度學(xué)習(xí),那么我建議你先閱讀 TensorFlow 2 中的 Keras 教程,以及 PyTorch 中的 fastai 教程。即使不深入了解 TensorFlow 和PyTorch 的低級(jí) API ,你也有很多東西需要學(xué)習(xí),而且你應(yīng)該對(duì)這兩種方法都有所了解。然后,你可能會(huì)意識(shí)到這兩個(gè)框架的確有多相似之處,而且它們賴以生存的概念和技術(shù)都是相同的。

在很多情況下,選用哪種框架無(wú)關(guān)緊要:你會(huì)發(fā)現(xiàn)每個(gè)框架可用的模型基本相同。在某些特定的情況下,可能某個(gè)框架優(yōu)于另一個(gè)——至少在當(dāng)前版本是如此。你可能還會(huì)發(fā)現(xiàn),學(xué)習(xí)其中某一個(gè)更為容易,原因可能是框架中的某些基本功能,也有可能是教程的質(zhì)量。

審核編輯:郭婷


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • python
    +關(guān)注

    關(guān)注

    56

    文章

    4802

    瀏覽量

    84885
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5510

    瀏覽量

    121349
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    808

    瀏覽量

    13292

原文標(biāo)題:掌握深度學(xué)習(xí),為什么要用PyTorch、TensorFlow框架?

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?237次閱讀
    <b class='flag-5'>Pytorch</b><b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的方法

    pytorch環(huán)境搭建詳細(xì)步驟

    PyTorch作為一個(gè)廣泛使用的深度學(xué)習(xí)框架,其環(huán)境搭建對(duì)于從事機(jī)器學(xué)習(xí)深度
    的頭像 發(fā)表于 08-01 15:38 ?912次閱讀

    pytorch和python的關(guān)系是什么

    ,PyTorch已經(jīng)成為了一個(gè)非常受歡迎的框架。本文將介紹PyTorch和Python之間的關(guān)系,以及它們?cè)?b class='flag-5'>深度學(xué)習(xí)領(lǐng)域的應(yīng)用。 Pytho
    的頭像 發(fā)表于 08-01 15:27 ?2136次閱讀

    NVIDIA推出全新深度學(xué)習(xí)框架fVDB

    在 SIGGRAPH 上推出的全新深度學(xué)習(xí)框架可用于打造自動(dòng)駕駛汽車、氣候科學(xué)和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發(fā)表于 08-01 14:31 ?641次閱讀

    PyTorch深度學(xué)習(xí)開發(fā)環(huán)境搭建指南

    PyTorch作為一種流行的深度學(xué)習(xí)框架,其開發(fā)環(huán)境的搭建對(duì)于深度學(xué)習(xí)研究者和開發(fā)者來(lái)說(shuō)至關(guān)重要
    的頭像 發(fā)表于 07-16 18:29 ?1167次閱讀

    TensorFlow是什么?TensorFlow怎么?

    TensorFlow是由Google開發(fā)的一個(gè)開源深度學(xué)習(xí)框架,它允許開發(fā)者方便地構(gòu)建、訓(xùn)練和部署各種復(fù)雜的機(jī)器學(xué)習(xí)模型。
    的頭像 發(fā)表于 07-12 16:38 ?760次閱讀

    基于PyTorch的卷積核實(shí)例應(yīng)用

    深度學(xué)習(xí)和計(jì)算機(jī)視覺領(lǐng)域,卷積操作是一種至關(guān)重要的技術(shù),尤其在圖像處理和特征提取方面發(fā)揮著核心作用。PyTorch作為當(dāng)前最流行的深度學(xué)習(xí)
    的頭像 發(fā)表于 07-11 15:19 ?509次閱讀

    pytorch中有神經(jīng)網(wǎng)絡(luò)模型嗎

    當(dāng)然,PyTorch是一個(gè)廣泛使用的深度學(xué)習(xí)框架,它提供了許多預(yù)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)模型。 PyTorch中的神經(jīng)網(wǎng)絡(luò)模型 1. 引言
    的頭像 發(fā)表于 07-11 09:59 ?735次閱讀

    PyTorch的介紹與使用案例

    PyTorch是一個(gè)基于Python的開源機(jī)器學(xué)習(xí)庫(kù),它主要面向深度學(xué)習(xí)和科學(xué)計(jì)算領(lǐng)域。PyTorch由Meta Platforms(原Fa
    的頭像 發(fā)表于 07-10 14:19 ?431次閱讀

    tensorflowpytorch哪個(gè)更簡(jiǎn)單?

    TensorFlowPyTorch都是用于深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的開源框架
    的頭像 發(fā)表于 07-05 09:45 ?927次閱讀

    tensorflowpytorch哪個(gè)好

    tensorflowpytorch都是非常不錯(cuò)的強(qiáng)大的框架,TensorFlow還是PyTorch哪個(gè)更好取決于您的具體需求,以下是關(guān)于這
    的頭像 發(fā)表于 07-05 09:42 ?734次閱讀

    keras模型轉(zhuǎn)tensorflow session

    和訓(xùn)練深度學(xué)習(xí)模型。Keras是基于TensorFlow、Theano或CNTK等底層計(jì)算框架構(gòu)建的。TensorFlow是一個(gè)開源的機(jī)器
    的頭像 發(fā)表于 07-05 09:36 ?570次閱讀

    PyTorch如何訓(xùn)練自己的數(shù)據(jù)集

    PyTorch是一個(gè)廣泛使用的深度學(xué)習(xí)框架,它以其靈活性、易用性和強(qiáng)大的動(dòng)態(tài)圖特性而聞名。在訓(xùn)練深度學(xué)習(xí)
    的頭像 發(fā)表于 07-02 14:09 ?1906次閱讀

    TensorFlowPyTorch深度學(xué)習(xí)框架的比較與選擇

    深度學(xué)習(xí)作為人工智能領(lǐng)域的一個(gè)重要分支,在過去十年中取得了顯著的進(jìn)展。在構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型的過程中,深度
    的頭像 發(fā)表于 07-02 14:04 ?1018次閱讀

    谷歌模型框架是什么軟件?谷歌模型框架怎么?

    谷歌模型框架通常指的是谷歌開發(fā)的用于機(jī)器學(xué)習(xí)和人工智能的軟件框架,其中最著名的是TensorFlow。TensorFlow是一個(gè)開源的機(jī)器
    的頭像 發(fā)表于 03-01 16:25 ?928次閱讀