CMOS邏輯門電路是在TTL電路問世之后 ,所開發(fā)出的第二種廣泛應(yīng)用的數(shù)字集成器件,從發(fā)展趨勢來看,由于制造工藝的改進(jìn),CMOS電路的性能有可能超越TTL而成為占主導(dǎo)地位的邏輯器件 。CMOS電路的工作速度可與TTL相比較,而它的功耗和抗干擾能力則遠(yuǎn)優(yōu)于TTL。此外,幾乎所有的超大規(guī)模存儲器件 ,以及PLD器件都采用CMOS藝制造,且費(fèi)用較低。
早期生產(chǎn)的CMOS門電路為4000系列 ,隨后發(fā)展為4000B系列。當(dāng)前與TTL兼容的CMO器件如74HCT系列等可與TTL器件交換使用。下面首先討論CMOS反相器,然后介紹其他CMO邏輯門電路。
MOS管結(jié)構(gòu)圖
MOS管主要參數(shù):
1.開啟電壓VT
·開啟電壓(又稱閾值電壓):使得源極S和漏極D之間開始形成導(dǎo)電溝道所需的柵極電壓;
·標(biāo)準(zhǔn)的N溝道MOS管,VT約為3~6V;
·通過工藝上的改進(jìn),可以使MOS管的VT值降到2~3V。
2. 直流輸入電阻RGS
·即在柵源極之間加的電壓與柵極電流之比
·這一特性有時以流過柵極的柵流表示
·MOS管的RGS可以很容易地超過1010Ω。
3. 漏源擊穿電壓BVDS
·在VGS=0(增強(qiáng)型)的條件下 ,在增加漏源電壓過程中使ID開始劇增時的VDS稱為漏源擊穿電壓BVDS
·ID劇增的原因有下列兩個方面:
?。?)漏極附近耗盡層的雪崩擊穿
?。?)漏源極間的穿通擊穿
·有些MOS管中,其溝道長度較短,不斷增加VDS會使漏區(qū)的耗盡層一直擴(kuò)展到源區(qū),使溝道長度為零,即產(chǎn)生漏源間的穿通,穿通后
,源區(qū)中的多數(shù)載流子,將直接受耗盡層電場的吸引,到達(dá)漏區(qū),產(chǎn)生大的ID
4. 柵源擊穿電壓BVGS
·在增加?xùn)旁措妷哼^程中,使柵極電流IG由零開始劇增時的VGS,稱為柵源擊穿電壓BVGS。
5. 低頻跨導(dǎo)gm
·在VDS為某一固定數(shù)值的條件下 ,漏極電流的微變量和引起這個變化的柵源電壓微變量之比稱為跨導(dǎo)
·gm反映了柵源電壓對漏極電流的控制能力
·是表征MOS管放大能力的一個重要參數(shù)
·一般在十分之幾至幾mA/V的范圍內(nèi)
6. 導(dǎo)通電阻RON
·導(dǎo)通電阻RON說明了VDS對ID的影響 ,是漏極特性某一點(diǎn)切線的斜率的倒數(shù)
·在飽和區(qū),ID幾乎不隨VDS改變,RON的數(shù)值很大 ,一般在幾十千歐到幾百千歐之間
·由于在數(shù)字電路中 ,MOS管導(dǎo)通時經(jīng)常工作在VDS=0的狀態(tài)下,所以這時的導(dǎo)通電阻RON可用原點(diǎn)的RON來近似
·對一般的MOS管而言,RON的數(shù)值在幾百歐以內(nèi)
7. 極間電容
·三個電極之間都存在著極間電容:柵源電容CGS 、柵漏電容CGD和漏源電容CDS
·CGS和CGD約為1~3pF
·CDS約在0.1~1pF之間
8. 低頻噪聲系數(shù)NF
·噪聲是由管子內(nèi)部載流子運(yùn)動的不規(guī)則性所引起的
·由于它的存在,就使一個放大器即便在沒有信號輸人時,在輸 出端也出現(xiàn)不規(guī)則的電壓或電流變化
·噪聲性能的大小通常用噪聲系數(shù)NF來表示,它的單位為分貝(dB)
·這個數(shù)值越小,代表管子所產(chǎn)生的噪聲越小
·低頻噪聲系數(shù)是在低頻范圍內(nèi)測出的噪聲系數(shù)
·場效應(yīng)管的噪聲系數(shù)約為幾個分貝,它比雙極性三極管的要小
由本書模擬部分已知,MOSFET有P溝道和N溝道兩種,每種中又有耗盡型和增強(qiáng)型兩類。由N溝道和P溝道兩種MOSFET組成的電路稱為互補(bǔ)MOS或CMOS電路。
下圖表示CMOS反相器電路,由兩只增強(qiáng)型MOSFET組成,其中一個為N溝道結(jié)構(gòu),另一個為P溝道結(jié)構(gòu)。為了電路能正常工作,要求電源電壓VDD大于兩個管子的開啟電壓的絕對值之和,即
VDD>(VTN+|VTP|) 。
1.工作原理
首先考慮兩種極限情況:當(dāng)vI處于邏輯0時 ,相應(yīng)的電壓近似為0V;而當(dāng)vI處于邏輯1時,相應(yīng)的電壓近似為VDD。假設(shè)在兩種情況下N溝道管 TN為工作管P溝道管TP為負(fù)載管。但是,由于電路是互補(bǔ)對稱的,這種假設(shè)可以是任意的,相反的情況亦將導(dǎo)致相同的結(jié)果。
下圖分析了當(dāng)vI=VDD時的工作情況。在TN的輸出特性iD—vDS(vGSN=VDD)(注意vDSN=vO)上 ,疊加一條負(fù)載線,它是負(fù)載管TP在 vSGP=0V時的輸出特性iD-vSD。由于vSGP<VT(VTN=|VTP|=VT),負(fù)載曲線幾乎是一條與橫軸重合的水平線。兩條曲線的交點(diǎn)即工作點(diǎn)。顯然,這時的輸出電壓vOL≈0V(典型值<10mV ,而通過兩管的電流接近于零。這就是說,電路的功耗很?。ㄎ⑼吡考墸?/P>
下圖分析了另一種極限情況,此時對應(yīng)于vI=0V。此時工作管TN在vGSN=0的情況下運(yùn)用,其輸出特性iD-vDS幾乎與橫軸重合 ,負(fù)載曲線是負(fù)載管TP在vsGP=VDD時的輸出特性iD-vDS。由圖可知,工作點(diǎn)決定了VO=VOH≈VDD;通過兩器件的電流接近零值 ??梢娚鲜鰞煞N極限情況下的功耗都很低。
由此可知,基本CMOS反相器近似于一理想的邏輯單元,其輸出電壓接近于零或+VDD,而功耗幾乎為零。
2.傳輸特性
下圖為CMOS反相器的傳輸特性圖。圖中VDD=10V,VTN=|VTP|=VT=
2V。由于 VDD>(VTN+|VTP|),因此,當(dāng)VDD-|VTP|>vI>VTN 時,TN和TP兩管同時導(dǎo)通??紤]到電路是互補(bǔ)對稱的,一器件可將另一器件視為它的漏極負(fù)載。還應(yīng)注意到,器件在放大區(qū)(飽和區(qū))呈現(xiàn)恒流特性,兩器件之一可當(dāng)作高阻值的負(fù)載。因此,在過渡區(qū)域,傳輸特性變化比較急劇。兩管在VI=VDD/2處轉(zhuǎn)換狀態(tài)。
3.工作速度
CMOS反相器在電容負(fù)載情況下,它的開通時間與關(guān)閉時間是相等的,這是因?yàn)殡娐肪哂谢パa(bǔ)對稱的性質(zhì)。下圖表示當(dāng)vI=0V時 ,TN截止,TP導(dǎo)通,由VDD通過TP向負(fù)載電容CL充電的情況。由于CMOS反相器中,兩管的gm值均設(shè)計(jì)得較大,其導(dǎo)通電阻較小,充電回路的時間常數(shù)較小。類似地,亦可分析電容CL的放電過程。CMOS反相器的平均傳輸延遲時間約為10ns。
1.與非門電路
下圖是2輸入端CMOS與非門電路,其中包括兩個串聯(lián)的N溝道增強(qiáng)型MOS管和兩個并聯(lián)的P溝道增強(qiáng)型MOS管。每個輸入端連到一個N溝道和一個P溝道MOS管的柵極。當(dāng)輸入端A、B中只要有一個為低電平時,就會使與它相連的NMOS管截止,與它相連的PMOS管導(dǎo)通,輸出為高電平;僅當(dāng)A、B全為高電平時,才會使兩個串聯(lián)的NMOS管都導(dǎo)通,使兩個并聯(lián)的PMOS管都截止,輸出為低電平。
因此,這種電路具有與非的邏輯功能,即
n個輸入端的與非門必須有n個NMOS管串聯(lián)和n個PMOS管并聯(lián)。
2.或非門電路
下圖是2輸入端CMOS或非門電路。其中包括兩個并聯(lián)的N溝道增強(qiáng)型MOS管和兩個串聯(lián)的P溝道增強(qiáng)型MOS管。
當(dāng)輸入端A、B中只要有一個為高電平時,就會使與它相連的NMOS管導(dǎo)通,與它相連的PMOS管截止,輸出為低電平;僅當(dāng)A、B全為低電平時,兩個并聯(lián)NMOS管都截止,兩個串聯(lián)的PMOS管都導(dǎo)通,輸出為高電平。
因此,這種電路具有或非的邏輯功能,其邏輯表達(dá)式為
顯然,n個輸入端的或非門必須有n個NMOS管并聯(lián)和n個PMOS管并聯(lián)。
比較CMOS與非門和或非門可知,與非門的工作管是彼此串聯(lián)的,其輸出電壓隨管子個數(shù)的增加而增加;或非門則相反,工作管彼此并聯(lián),對輸出電壓不致有明顯的影響。因而或非門用得較多。
3.異或門電路
上圖為CMOS異或門電路。它由一級或非門和一級與或非門組成?;蚍情T的輸出。而與或非門的輸出L即為輸入A、B的異或
如在異或門的后面增加一級反相器就構(gòu)成異或非門,由于具有的功能,因而稱為同或門。異成門和同或門的邏輯符號如下圖所示。
三、BiCMOS門電路
雙極型CMOS或BiCMOS的特點(diǎn)在于,利用了雙極型器件的速度快和MOSFET的功耗低兩方面的優(yōu)勢,因而這種邏輯門電路受到用戶的重視
。
1.BiCMOS反相器
上圖表示基本的BiCMOS反相器電路,為了清楚起見,MOSFET用符號M表示BJT用T表示。T1和T2構(gòu)成推拉式輸出級。而Mp、MN、M1、M2所組成的輸入級與基本的CMOS反相器很相似。輸入信號vI同時作用于MP和MN的柵極。當(dāng)vI為高電壓時MN導(dǎo)通而MP截止;而當(dāng)vI為低電壓時,情況則相反,Mp導(dǎo)通,MN截止。當(dāng)輸出端接有同類BiCMOS門電路時,輸出級能提供足夠大的電流為電容性負(fù)載充電。同理,已充電的電容負(fù)載也能迅速地通過T2放電。
上述電路中T1和T2的基區(qū)存儲電荷亦可通過M1和M2釋放,以加快
電路的開關(guān)速度。當(dāng)vI為高電壓時M1導(dǎo)通,T1基區(qū)的存儲電荷迅速消散。這種作用與TTL門電路的輸入級中T1類似。同理 ,當(dāng)vI為低電壓時,電源電壓VDD通過MP以激勵M2使M2導(dǎo)通,顯然T2基區(qū)的存儲電荷通過M2而消散。可見,門電路的開關(guān)速度可得到改善。
2.BiCMOS門電路
根據(jù)前述的CMOS門電路的結(jié)構(gòu)和工作原理,同樣可以用BiCMOS技術(shù)實(shí)現(xiàn)或非門和與非門。如果要實(shí)現(xiàn)或非邏輯關(guān)系,輸入信號用來驅(qū)動并聯(lián)的N溝道MOSFET,而P溝道MOSFET則彼此串聯(lián)。正如下圖所示的
2輸入端或非門。
當(dāng)A和B均為低電平時,則兩個MOSFET MPA和MPB均導(dǎo)通,T1導(dǎo)通而MNA和MNB均截止,輸出L為高電平。與此同時,M1通過MPA和MpB被VDD所激勵,從而為T2的基區(qū)存儲電荷提供一條釋放通路。
另一方面,當(dāng)兩輸入端A和B中之一為高電平時 ,則MpA和MpB的通路被斷開,并且MNA或MNB導(dǎo)通,將使輸出端為低電平。同時,M1A或M1B為T1的基極存儲電荷提供一條釋放道路。因此 ,只要有一個輸入端接高電平,輸出即為低電平。
MOSFET的輸出特性在原點(diǎn)附近呈線性對稱關(guān)系,因而它們常用作模擬開關(guān)。模擬開關(guān)廣泛地用于取樣——保持電路、斬波電路、模數(shù)和數(shù)模轉(zhuǎn)換電路等。下面著重介紹CMOS傳輸門。
所謂傳輸門(TG)就是一種傳輸模擬信號的模擬開關(guān)。CMOS傳輸門由一個P溝道和一個N溝道增強(qiáng)型MOSFET并聯(lián)而成,如上圖所示。TP和TN是結(jié)構(gòu)對稱的器件,它們的漏極和源極是可互換的。設(shè)它們的開啟電壓|VT|=2V且輸入模擬信號的變化范圍為-5V到+5V 。為使襯底與漏源極之間的PN結(jié)任何時刻都不致正偏 ,故TP的襯底接+5V電壓,而TN的襯底接-5V電壓 。兩管的柵極由互補(bǔ)的信號電壓(+5V和-5V)來控制,分別用C和表示。
傳輸門的工作情況如下:當(dāng)C端接低電壓-5V時TN的柵壓即為-5V,vI取-5V到+5V范圍內(nèi)的任意值時,TN均不導(dǎo)通。同時,TP的柵壓為+5V
,TP亦不導(dǎo)通。可見,當(dāng)C端接低電壓時,開關(guān)是斷開的。
為使開關(guān)接通,可將C端接高電壓+5V。此時TN的柵壓為+5V ,vI在-5V到+3V的范圍內(nèi),TN導(dǎo)通。同時TP的棚壓為-5V ,vI在-3V到+5V的范圍內(nèi)TP將導(dǎo)通。
由上分析可知,當(dāng)vI<-3V時,僅有TN導(dǎo)通,而當(dāng)vI>+3V時,僅有TP導(dǎo)通當(dāng)vI在-3V到+3V的范圍內(nèi),TN和TP兩管均導(dǎo)通。進(jìn)一步分析
還可看到,一管導(dǎo)通的程度愈深,另一管的導(dǎo)通程度則相應(yīng)地減小。換句話說,當(dāng)一管的導(dǎo)通電阻減小,則另一管的導(dǎo)通電阻就增加。由于兩管系并聯(lián)運(yùn)行,可近似地認(rèn)為開關(guān)的導(dǎo)通電阻近似為一常數(shù)。這是CMOS傳輸出門的優(yōu)點(diǎn)。
在正常工作時,模擬開關(guān)的導(dǎo)通電阻值約為數(shù)百歐,當(dāng)它與輸入阻抗為兆歐級的運(yùn)放串接時,可以忽略不計(jì)。
CMOS傳輸門除了作為傳輸模擬信號的開關(guān)之外,也可作為各種邏輯電路的基本單元電路。
評論
查看更多