全球定位系統(tǒng)
1.什么是全球定位系統(tǒng)(GPS)
全球定位系統(tǒng)(GlobalPositioningSystem-GPS)是美國從本世紀(jì)70年代開始研制,歷時20年,耗資200億美元,于1994年全面建成,具有在海、陸、空進(jìn)行全方位實時三維導(dǎo)航與定位能力的新一代衛(wèi)星導(dǎo)航與定位系統(tǒng)。經(jīng)近10年我國測繪等部門的使用表明,GPS以全天候、高精度、自動化、高效益等顯著特點,贏得廣大測繪工作者的信賴,并成功地應(yīng)用于大地測量、工程測量、航空攝影測量、運載工具導(dǎo)航和管制、地殼運動監(jiān)測、工程變形監(jiān)測、資源勘察、地球動力學(xué)等多種學(xué)科,從而給測繪領(lǐng)域帶來一場深刻的技術(shù)革命。
全球定位系統(tǒng)(GlobalPositioningSystem,縮寫GPS)是美國第二代衛(wèi)星導(dǎo)航系統(tǒng)。是在子午儀衛(wèi)星導(dǎo)航系統(tǒng)的基礎(chǔ)上發(fā)展起來的,它采納了子午儀系統(tǒng)的成功經(jīng)驗。和子午儀系統(tǒng)一樣,全球定位系統(tǒng)由空間部分、地面監(jiān)控部分和用戶接收機三大部分組成。
按目前的方案,全球定位系統(tǒng)的空間部分使用24顆高度約2.02萬千米的衛(wèi)星組成衛(wèi)星星座。21+3顆衛(wèi)星均為近圓形軌道,運行周期約為11小時58分,分布在六個軌道面上(每軌道面四顆),軌道傾角為55度。衛(wèi)星的分布使得在全球的任何地方,任何時間都可觀測到四顆以上的衛(wèi)星,并能保持良好定位解算精度的幾何圖形(DOP)。這就提供了在時間上連續(xù)的全球?qū)Ш侥芰Α?br>地面監(jiān)控部分包括四個監(jiān)控間、一個上行注入站和一個主控站。監(jiān)控站設(shè)有GPS用戶接收機、原子鐘、收集當(dāng)?shù)貧庀髷?shù)據(jù)的傳感器和進(jìn)行數(shù)據(jù)初步處理的計算機。監(jiān)控站的主要任務(wù)是取得衛(wèi)星觀測數(shù)據(jù)并將這些數(shù)據(jù)傳送至主控站。主控站設(shè)在范登堡空軍基地。它對地面監(jiān)控部實行全面控制。主控站主要任務(wù)是收集各監(jiān)控站對GPS衛(wèi)星的全部觀測數(shù)據(jù),利用這些數(shù)據(jù)計算每顆GPS衛(wèi)星的軌道和衛(wèi)星鐘改正值。上行注入站也設(shè)在范登堡空軍基地。它的任務(wù)主要是在每顆衛(wèi)星運行至上空時把這類導(dǎo)航數(shù)據(jù)及主控站的指令注入到衛(wèi)星。這種注入對每顆GPS衛(wèi)星每天進(jìn)行一次,并在衛(wèi)星離開注入站作用范圍之前進(jìn)行最后的注入。
全球定位系統(tǒng)具有性能好、精度高、應(yīng)用廣的特點,是迄今最好的導(dǎo)航定位系統(tǒng)。隨著全球定位系統(tǒng)的不斷改進(jìn),硬、軟件的不斷完善,應(yīng)用領(lǐng)域正在不斷地開拓,目前已遍及國民經(jīng)濟各種部門,并開始逐步深入人們的日常生活。
2.GPS系統(tǒng)包括三大部分:
空間部分-GPS衛(wèi)星星座;地面控制部分-地面監(jiān)控系統(tǒng);用戶設(shè)備部分-GPS信號接收機。
GPS衛(wèi)星星座;GPS工作衛(wèi)星及其星座由21顆工作衛(wèi)星和3顆在軌備用衛(wèi)星組成GPS衛(wèi)星星座,記作(21+3)GPS星座。24顆衛(wèi)星均勻分布在6個軌道平面內(nèi),軌道傾角為55度,各個軌道平面之間相距60度,即軌道的升交點赤經(jīng)各相差60度。每個軌道平面內(nèi)各顆衛(wèi)星之間的升交角距相差90度,一軌道平面上的衛(wèi)星比西邊相鄰軌道平面上的相應(yīng)衛(wèi)星超前30度。在兩萬公里高空的GPS衛(wèi)星,當(dāng)?shù)厍驅(qū)阈莵碚f自轉(zhuǎn)一周時,它們繞地球運行二周,即繞地球一周的時間為12恒星時。這樣,對于地面觀測者來說,每天將提前4分鐘見到同一顆GPS衛(wèi)星。位于地平線以上的衛(wèi)星顆數(shù)隨著時間和地點的不同而不同,最少可見到4顆,最多可見到11顆。在用GPS信號導(dǎo)航定位時,為了結(jié)算測站的三維坐標(biāo),必須觀測4顆GPS衛(wèi)星,稱為定位星座。這4顆衛(wèi)星在觀測過程中的幾何位置分布對定位精度有一定的影響。對于某地某時,甚至不能測得精確的點位坐標(biāo),這種時間段叫做"間隙段"。但這種時間間隙段是很短暫的,并不影響全球絕大多數(shù)地方的全天候、高精度、連續(xù)實時牡己蕉ㄎ徊飭俊?GPS工作衛(wèi)星的編號和試驗衛(wèi)星基本相同。地面監(jiān)控系統(tǒng):對于導(dǎo)航定位來說,GPS衛(wèi)星是一動態(tài)已知點。星的位置是依據(jù)衛(wèi)星發(fā)射的星歷-描述衛(wèi)星運動及其軌道的的參數(shù)算得的。每顆GPS衛(wèi)星所播發(fā)的星歷,是由地面監(jiān)控系統(tǒng)提供的。衛(wèi)星上的各種設(shè)備是否正常工作,以及衛(wèi)星是否一直沿著預(yù)定軌道運行,都要由地面設(shè)備進(jìn)行監(jiān)測和控制。地面監(jiān)控系統(tǒng)另一重要作用是保持各顆衛(wèi)星處于同一時間標(biāo)準(zhǔn)-GPS時間系統(tǒng)。這就需要地面站監(jiān)測各顆衛(wèi)星的時間,求出鐘差。然后由地面注入站發(fā)給衛(wèi)星,衛(wèi)星再由導(dǎo)航電文發(fā)給用戶設(shè)備。GPS工作衛(wèi)星的地面監(jiān)控系統(tǒng)包括一個主控站、三個注入站和五個監(jiān)測站。
GPS信號接收機:GPS信號接收機的任務(wù)是:能夠捕獲到按一定衛(wèi)星高度截止角所選擇的待測衛(wèi)星的信號,并跟蹤這些衛(wèi)星的運行,對所接收到的GPS信號進(jìn)行變換、放大和處理,以便測量出GPS信號從衛(wèi)星到接收機天線的傳播時間,解譯出GPS衛(wèi)星所發(fā)送的導(dǎo)航電文,實時地計算出測站的三維位置,位置,甚至三維速度和時間。靜態(tài)定位中,GPS接收機在捕獲和跟蹤GPS衛(wèi)星的過程中固定不變,接收機高精度地測量GPS信號的傳播時間,利用GPS衛(wèi)星在軌的已知位置,解算出接收機天線所在位置的三維坐標(biāo)。而動態(tài)定位則是用GPS接收機測定一個運動物體的運行軌跡。GPS信號接收機所位于的運動物體叫做載體(如航行中的船艦,空中的飛機,行走的車輛等)。載體上的GPS接收機天線在跟蹤GPS衛(wèi)星的過程中相對地球而運動,接收機用GPS信號實時地測得運動載體的狀態(tài)參數(shù)(瞬間三維位置和三維速度)。
接收機硬件和機內(nèi)軟件以及GPS數(shù)據(jù)的后處理軟件包,構(gòu)成完整的GPS用戶設(shè)備。GPS接收機的結(jié)構(gòu)分為天線單元和接收單元兩大部分。對于測地型接收機來說,兩個單元一般分成兩個獨立的部件,觀測時將天線單元安置在測站上,接收單元置于測站附近的適當(dāng)?shù)胤?,用電纜線將兩者連接成一個整機。也有的將天線單元和接收單元制作成一個整體,觀測時將其安置在測站點上。
GPS接收機一般用蓄電池做電源。同時采用機內(nèi)機外兩種直流電源。設(shè)置機內(nèi)電池的目的在于更換外電池時不中斷連續(xù)觀測。在用機外電池的過程中,機內(nèi)電池自動充電。關(guān)機后,機內(nèi)電池為RAM存儲器供電,以防止丟失數(shù)據(jù)。
近幾年,國內(nèi)引進(jìn)了許多種類型的GPS測地型接收機。各種類型的GPS測地型接收機用于精密相對定位時,其雙頻接收機精度可達(dá)5mm+1PPM.D,單頻接收機在一定距離內(nèi)精度可達(dá)10mm+2PPM.D。用于差分定位其精度可達(dá)亞米級至厘米級。目前,各種類型的GPS接收機體積越來越小,重量越來越輕,便于野外觀測。GPS和GLONASS兼容的全球?qū)Ш蕉ㄎ幌到y(tǒng)接收機已經(jīng)問世。
3.GPS如何定位
GPS接收機可接收到可用于授時的準(zhǔn)確至納秒級的時間信息;用于預(yù)報未來幾個月內(nèi)衛(wèi)星所處概略位置的預(yù)報星歷;用于計算定位時所需衛(wèi)星坐標(biāo)的廣播星歷,精度為幾米至幾十米(各個衛(wèi)星不同,隨時變化);以及GPS系統(tǒng)信息,如衛(wèi)星狀況等。
GPS接收機對碼的量測就可得到衛(wèi)星到接收機的距離,由于含有接收機衛(wèi)星鐘的誤差及大氣傳播誤差,故稱為偽距。對0A碼測得的偽距稱為UA碼偽距,精度約為20米左右,對P碼測得的偽距稱為P碼偽距,精度約為2米左右。
GPS接收機對收到的衛(wèi)星信號,進(jìn)行解碼或采用其它技術(shù),將調(diào)制在載波上的信息去掉后,就可以恢復(fù)載波。嚴(yán)格而言,載波相位應(yīng)被稱為載波拍頻相位,它是收到的受多普勒頻移影響的衛(wèi)星信號載波相位與接收機本機振蕩產(chǎn)生信號相位之差。一般在接收機鐘確定的歷元時刻量測,保持對衛(wèi)星信號的跟蹤,就可記錄下相位的變化值,但開始觀測時的接收機和衛(wèi)星振蕩器的相位初值是不知道的,起始?xì)v元的相位整數(shù)也是不知道的,即整周模糊度,只能在數(shù)據(jù)處理中作為參數(shù)解算。相位觀測值的精度高至毫米,但前提是解出整周模糊度,因此只有在相對定位、并有一段連續(xù)觀測值時才能使用相位觀測值,而要達(dá)到優(yōu)于米級的定位精度也只能采用相位觀測值。
按定位方式,GPS定位分為單點定位和相對定位(差分定位)。單點定位就是根據(jù)一臺接收機的觀測數(shù)據(jù)來確定接收機位置的方式,它只能采用偽距觀測量,可用于車船等的概略導(dǎo)航定位。相對定位(差分定位)是根據(jù)兩臺以上接收機的觀測數(shù)據(jù)來確定觀測點之間的相對位置的方法,它既可采用偽距觀測量也可采用相位觀測量,大地測量或工程測量均應(yīng)采用相位觀測值進(jìn)行相對定位。
在GPS觀測量中包含了衛(wèi)星和接收機的鐘差、大氣傳播延遲、多路徑效應(yīng)等誤差,在定位計算時還要受到衛(wèi)星廣播星歷誤差的影響,在進(jìn)行相對定位時大部分公共誤差被抵消或削弱,因此定位精度將大大提高,雙頻接收機可以根據(jù)兩個頻率的觀測量抵消大氣中電離層誤差的主要部分,在精度要求高,接收機間距離較遠(yuǎn)時(大氣有明顯差別),應(yīng)選用雙頻接收機。
在定位觀測時,若接收機相對于地球表面運動,則稱為動態(tài)定位,如用于車船等概略導(dǎo)航定位的精度為30一100米的偽距單點定位,或用于城市車輛導(dǎo)航定位的米級精度的偽距差分定位,或用于測量放樣等的厘米級的相位差分定位(RTK),實時差分定位需要數(shù)據(jù)鏈將兩個或多個站的觀測數(shù)據(jù)實時傳輸?shù)揭黄鹩嬎?。在定位觀測時,若接收機相對于地球表面靜止,則稱為靜態(tài)定位,在進(jìn)行控制網(wǎng)觀測時,一般均采用這種方式由幾臺接收機同時觀測,它能最太限度地發(fā)揮GPS的定位精度,專用于這種目的的接收機被稱為大地型接收機,是接收機中性能最好的一類。
目前,GPS已經(jīng)能夠達(dá)到地殼形變觀測的精度要求,IGS的常年觀測臺站已經(jīng)能構(gòu)成毫米級的全球坐標(biāo)框架。
4.什么是RTK技術(shù)
常規(guī)的GPS測量方法,如靜態(tài)、快速靜態(tài)、動態(tài)測量都需要事后進(jìn)行解算才能獲得厘米級的精度,而RTK是能夠在野外實時得到厘米級定位精度的測量方法,它采用了載波相位動態(tài)實時差分(Real-timekinematic)方法,是GPS應(yīng)用的重大里程碑,它的出現(xiàn)為工程放樣、地形測圖,各種控制測量帶來了新曙光,極大地提高了外業(yè)作業(yè)效率。
高精度的GPS測量必須采用載波相位觀測值,RTK定位技術(shù)就是基于載波相位觀測值的實時動態(tài)定位技術(shù),它能夠?qū)崟r地提供測站點在指定坐標(biāo)系中的三維定位結(jié)果,并達(dá)到厘米級精度。在RTK作業(yè)模式下,基準(zhǔn)站通過數(shù)據(jù)鏈將其觀測值和測站坐標(biāo)信息一起傳送給流動站。流動站不僅通過數(shù)據(jù)鏈接收來自基準(zhǔn)站的數(shù)據(jù),還要采集GPS觀測數(shù)據(jù),并在系統(tǒng)內(nèi)組成差分觀測值進(jìn)行實時處理,同時給出厘米級定位結(jié)果,歷時不到一可秒鐘。流動站處于靜止?fàn)顟B(tài),也可處于運動狀態(tài);可在固定點上先進(jìn)行初始化后再進(jìn)入動態(tài)作業(yè),也可在動態(tài)條件下直接開機,并在動態(tài)環(huán)境下完成周模糊度的搜索求解。在整周末知數(shù)解固定后,即可進(jìn)行每個歷元的實時處理,只要能保持四顆以上衛(wèi)星相位觀測值的跟蹤和必要的幾何圖形,則流動站可隨時給出厘米級定位結(jié)果。
RTK技術(shù)的關(guān)鍵在于數(shù)據(jù)處理技術(shù)和數(shù)據(jù)傳輸技術(shù),RTK定位時要求基準(zhǔn)站接收機實時地把觀測數(shù)據(jù)(偽距觀測值,相位觀測值)及已知數(shù)據(jù)傳輸給流動站接收機,數(shù)據(jù)量比較大,一般都要求9600的波特率,這在無線電上不難實現(xiàn)。
評論
查看更多