資料介紹
Table of Contents
AD7298 - Microcontroller No-OS Driver
Supported Devices
Evaluation Boards
Overview
AD7298
The AD7298 is a 12-bit, high speed, low power, 8-channel, successive approximation ADC with an internal temperature sensor. The part operates from a single 3.3 V power supply and features throughput rates up to 1 MSPS. The device contains a low noise, wide bandwidth track-and-hold amplifier that can handle input frequencies in excess of 30 MHz.
The AD7298 offers a programmable sequencer, which enables the selection of a pre-programmable sequence of channels for conversion. The device has an on-chip 2.5 V reference that can be disabled to allow the use of an external reference.
The AD7298 offers a programmable sequencer, which enables the selection of a preprogrammable sequence of channels for conversion. The device has an on-chip, 2.5 V reference that can be disabled to allow the use of an external reference.
The AD7298 includes a high accuracy band gap temperature sensor, which is monitored and digitized by the 12-bit ADC to give a resolution of 0.25°C. The device offers a 4-wire serial interface compatible with SPI and DSP interface standards.
The AD7298 uses advanced design techniques to achieve very low power dissipation at high throughput rates. The part also offers flexible power/throughput rate management options. The part is offered in a 20-lead LFCSP package.
The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for Renesas platforms.
HW Platform(s):
Driver Description
The driver contains two parts:
- The driver for the AD7298 part, which may be used, without modifications, with any microcontroller.
- The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.
The Communication Driver has a standard interface, so the AD7298 driver can be used exactly as it is provided.
There are three functions which are called by the AD7298 driver:
- SPI_Init() – initializes the communication peripheral.
- SPI_Write() – writes data to the device.
- SPI_Read() – reads data from the device.
SPI driver architecture
The following functions are implemented in this version of AD7298 driver:
Function | Description |
---|---|
unsigned char AD7298_Init(void) | Initializes the SPI communication peripheral. |
void AD7298_SetPower(unsigned char powerOption) | Powers up or powers down the device. |
void AD7298_SetControlRegister(unsigned short value) | Sets the Control Register. |
void AD7298_ConfigConversion(unsigned char repeat, unsigned short channels, unsigned char extRef, unsigned char tSense, unsigned char tSenseAvg) | Configures the conversion settings. |
void AD7298_GetConversionResult(unsigned short *convData, unsigned char *ch) | Returns the conversion value and its corresponding channel index. |
float AD7298_CalcTemp(unsigned short value, float vRef) | Calculates the temperature in degrees Celsius. |
float AD7298_CalcVoltage(unsigned short value, float vRef) | Calculates the measured voltage. Vref is considered to be 2.5V. |
Downloads
Renesas RL78G13 Quick Start Guide
This section contains a description of the steps required to run the AD7298 demonstration project on a Renesas RL78G13 platform.
Required Hardware
Required Software
Hardware Setup
An EVAL-AD7298SDZ has to be interfaced with the Renesas Demonstration Kit (RDK) for RL78G13:
EVAL-AD7298SDZ Pin T_CS → YRDKRL78G13 J11 connector Pin 1 EVAL-AD7298SDZ Pin T_DIN → YRDKRL78G13 J11 connector Pin 2 EVAL-AD7298SDZ Pin T_DOUT → YRDKRL78G13 J11 connector Pin 3 EVAL-AD7298SDZ Pin T_SCLK → YRDKRL78G13 J11 connector Pin 4 EVAL-AD7298SDZ Pin PD → YRDKRL78G13 J11 connector Pin 9 EVAL-AD7298SDZ Pin T_SENSE_B → YRDKRL78G13 J11 connector Pin 10
Reference Project Overview
The reference project samples the input voltage on channel 2 and 3 and displays the values on the LCD. The chip temperature is also displayed simultaneously.
Software Project Tutorial
This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RL78G13 for controlling and monitoring the operation of the ADI part.
- Run the IAR Embedded Workbench for Renesas RL78 integrated development environment.
- Choose to create a new project (Project – Create New Project).
- Select the RL78 tool chain, the Empty project template and click OK.
- Select a location and a name for the project (ADIEvalBoard for example) and click Save.
- Open the project’s options window (Project – Options).
- From the Target tab of the General Options category select the RL78 – R5F100LE device.
- From the Setup tab of the Debugger category select the TK driver and click OK.
- Extract the files from the lab .zip archive and copy them into the project’s folder.
- The new source files have to be included into the project. Open the Add Files… window (Project – Add Files…), select all the copied files and click open.
- At this moment, all the files are included into the project.
- The project is ready to be compiled and downloaded on the board. Press the F7 key to compile it. Press CTRL + D to download and debug the project.
- A window will appear asking to configure the emulator. Keep the default settings and press OK.
- To run the project press F5.
Digilent Cerebot MX3cK Quick Start Guide
This section contains a description of the steps required to run the AD7298 demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
Required Software
Hardware Setup
An EVAL-AD7298SDZ has to be connected to the JE connector of Cerebot MX3cK development board.
EVAL-AD7298SDZ Pin T_CS → Cerebot MX3cK JE connector Pin 1 EVAL-AD7298SDZ Pin T_DIN → Cerebot MX3cK JE connector Pin 2 EVAL-AD7298SDZ Pin T_DOUT → Cerebot MX3cK JE connector Pin 3 EVAL-AD7298SDZ Pin T_SCLK → Cerebot MX3cK JE connector Pin 4 EVAL-AD7298SDZ Pin PD → Cerebot MX3cK JE connector Pin 9 EVAL-AD7298SDZ Pin T_SENSE_B → Cerebot MX3cK JE connector Pin 10
Reference Project Overview
Following commands were implemented in this version of AD7298 reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
power= | Power on or off the device. Accepted values: 0, 1. |
channel= | Selects the current channel. Accepted values: 0 - 7. |
rawdata? | Reads one sample from the selected channel. |
voltage? | Reads one sample form the selected channel and converts it to voltage. |
temp? | Reads and displays the temperature in degrees Celsius. |
samples= | Reads a number of samples of the current channel indicated by the user. Accepted values: 1 - 1024 |
Commands can be executed using a serial terminal connected to the UART1 peripheral of PIC32MX320F128H.
The following image shows a list of commands in a serial terminal connected to processor’s UART peripheral.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose PIC32MX320F128H device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC32 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, all the downloaded source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MX3cK Quick Start Guide - Arduino
This section contains a description of the steps required to run the AD7298 Arduino demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
Required Software
Hardware Setup
An EVAL-AD7298SDZ has to be connected to the JE connector of Cerebot MX3cK development board.
EVAL-AD7298SDZ Pin T_CS → Cerebot MX3cK JE connector Pin 1 EVAL-AD7298SDZ Pin T_DIN → Cerebot MX3cK JE connector Pin 2 EVAL-AD7298SDZ Pin T_DOUT → Cerebot MX3cK JE connector Pin 3 EVAL-AD7298SDZ Pin T_SCLK → Cerebot MX3cK JE connector Pin 4 EVAL-AD7298SDZ Pin PD → Cerebot MX3cK JE connector Pin 9 EVAL-AD7298SDZ Pin T_SENSE_B → Cerebot MX3cK JE connector Pin 10
Reference Project Overview
Following commands were implemented in this version of AD7298 reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
power= | Power on or off the device. Accepted values: 0, 1. |
channel= | Selects the current channel. Accepted values: 0 - 7. |
rawdata? | Reads one sample from the selected channel. |
voltage? | Reads one sample form the selected channel and converts it to voltage. |
temp? | Reads and displays the temperature in degrees Celsius. |
samples= | Reads a number of samples of the current channel indicated by the user. Accepted values: 1 - 1024 |
Commands can be executed using the serial monitor.
Carriage return has to be selected as a line ending character. The required baud rate is 9600 baud.
The following image shows a list of commands in the serial monitor.
Software Project Setup
This section presents the steps for developing a chipKIT application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Under your Sketchbook directory create a folder called “Libraries”; this folder may already exist.
- Unzip the downloaded file in the libraries folder.
- Run the MPIDE environment.
- You should see the new library under Sketch→Import Library, under Contributed.
- Also you should see under File→Examples the demo project for the ADI library.
- Select the ADIDriver example.
- Select the Cerebot MX3cK board from Tools→Board.
- Select the corresponding Serial Communication Port from Tools→Serial Port
- The project is ready to be uploaded on the development board.
More information
- Example questions:
- An error occurred while fetching this feed: http://ez.analog.com/community/feeds/allcontent/atom?community=2077
- AD5443-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5449-微控制器無操作系統(tǒng)驅(qū)動程序
- AD7291-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5790-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5754R-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5110-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5162-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5421-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5669R-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5252-微控制器無操作系統(tǒng)驅(qū)動程序
- AD7799-微控制器無操作系統(tǒng)驅(qū)動程序
- AD7887-微控制器無操作系統(tǒng)驅(qū)動程序
- AD7734-微控制器無操作系統(tǒng)驅(qū)動程序
- AD7176-微控制器無操作系統(tǒng)驅(qū)動程序
- AD4112微控制器無操作系統(tǒng)驅(qū)動程序
- 深度解析全球操作系統(tǒng)格局 676次閱讀
- 為MAXQ2000微控制器實現(xiàn)JTAG自舉加載程序主控 984次閱讀
- 實時時鐘為微控制器系統(tǒng)增加了精確的計時功能 1121次閱讀
- 了解和使用無操作系統(tǒng)和平臺驅(qū)動程序 1066次閱讀
- 基于具有USB功能的STM32微控制器 3682次閱讀
- 嵌入式Linux內(nèi)核的驅(qū)動程序開發(fā)是怎樣的 1415次閱讀
- 淺談電腦驅(qū)動程序的工作原理 詳解電腦驅(qū)動程序意義 2.9w次閱讀
- 基于嵌入式Linux內(nèi)核的系統(tǒng)設(shè)備驅(qū)動程序開發(fā)設(shè)計 1113次閱讀
- 基于Linux2.6.30開發(fā)DS18B20的驅(qū)動程序的類型和文件操作接口函數(shù)詳解 1377次閱讀
- 微控制器的相關(guān)知識介紹(含義、編程語言) 5139次閱讀
- 基于STM32的數(shù)字PDA系統(tǒng)軟件系統(tǒng)設(shè)計 1480次閱讀
- 8255A驅(qū)動程序 3193次閱讀
- 8155驅(qū)動程序 3057次閱讀
- 基于STM32ZET6控制器的數(shù)字PDA系統(tǒng)的設(shè)計 1504次閱讀
- Xilinx設(shè)備的驅(qū)動程序 7967次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費下載
- 0.00 MB | 1491次下載 | 免費
- 2單片機典型實例介紹
- 18.19 MB | 95次下載 | 1 積分
- 3S7-200PLC編程實例詳細資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識別和講解說明
- 4.28 MB | 18次下載 | 4 積分
- 5開關(guān)電源原理及各功能電路詳解
- 0.38 MB | 11次下載 | 免費
- 6100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 7基于單片機和 SG3525的程控開關(guān)電源設(shè)計
- 0.23 MB | 4次下載 | 免費
- 8基于AT89C2051/4051單片機編程器的實驗
- 0.11 MB | 4次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費
- 4LabView 8.0 專業(yè)版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費
- 5555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33562次下載 | 免費
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費
- 8開關(guān)電源設(shè)計實例指南
- 未知 | 21539次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537793次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191183次下載 | 免費
- 7十天學(xué)會AVR單片機與C語言視頻教程 下載
- 158M | 183277次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138039次下載 | 免費
評論
查看更多