資料介紹
無(wú)損數(shù)據(jù)編碼領(lǐng)域應(yīng)用較少。針對(duì)這種現(xiàn)狀,該文詳細(xì)地研究了最大熵統(tǒng)計(jì)模型和神經(jīng)網(wǎng)絡(luò)算法各自的特點(diǎn),提出了一種基于最大熵原理的神經(jīng)網(wǎng)絡(luò)概率預(yù)測(cè)模型并結(jié)合自適應(yīng)算術(shù)編碼來(lái)進(jìn)行數(shù)據(jù)壓縮,具有精簡(jiǎn)的網(wǎng)絡(luò)結(jié)構(gòu)的自適應(yīng)在線(xiàn)學(xué)習(xí)算法。試驗(yàn)表明,該算法在壓縮率上可以?xún)?yōu)于目前流行的壓縮算法Limpel-Zip(zip,gzip),并且在運(yùn)行時(shí)間和所需空間性能上同PPM和Burrows Wheeler算法相比也是頗具競(jìng)爭(zhēng)力的。該算法實(shí)現(xiàn)為多輸入和單輸出的兩層神經(jīng)網(wǎng)絡(luò),用已編碼比特的學(xué)習(xí)結(jié)果作為待編碼比特的工作參數(shù),符合數(shù)據(jù)上下文相關(guān)約束的特點(diǎn),提高了預(yù)測(cè)精度,并節(jié)約了編碼時(shí)間。
關(guān) 鍵 詞 算術(shù)編碼; 數(shù)據(jù)壓縮; 最大熵; 神經(jīng)網(wǎng)絡(luò)
Lossless Data Compression with Neural Network Based on Maximum Entropy Theory
FU Yan,ZHOU Jun-lin,WU Yue
Neural networks are used more frequently in lossy data coding domains such as audio, image, etc than in general lossless data coding, because standard neural networks must be trained off-line and they are too slow to be practical. In this paper, an adaptive arithmetic coding algorithm based on maximum entropy and neural networks are proposed for data compression. This adaptive algorithm with simply structure can do on-line learning and does not need to be trained off-line. The experiments show that this algorithm surpasses those traditional coding method, such as Limper-Ziv compressors (zip, gzip), in compressing rate and is competitive in speed and time with those traditional coding method such as PPM and Burrows-Wheeler algorithms. The compressor is a bit-level predictive arithmetic which using a 2 layer network with muti-input and one output. The arithmetic, according with the context constriction, improves the precision of prediction and reduces the coding time.
Key words arithmetic encoding; data compression; maximum entropy; neural network
關(guān) 鍵 詞 算術(shù)編碼; 數(shù)據(jù)壓縮; 最大熵; 神經(jīng)網(wǎng)絡(luò)
Lossless Data Compression with Neural Network Based on Maximum Entropy Theory
FU Yan,ZHOU Jun-lin,WU Yue
Neural networks are used more frequently in lossy data coding domains such as audio, image, etc than in general lossless data coding, because standard neural networks must be trained off-line and they are too slow to be practical. In this paper, an adaptive arithmetic coding algorithm based on maximum entropy and neural networks are proposed for data compression. This adaptive algorithm with simply structure can do on-line learning and does not need to be trained off-line. The experiments show that this algorithm surpasses those traditional coding method, such as Limper-Ziv compressors (zip, gzip), in compressing rate and is competitive in speed and time with those traditional coding method such as PPM and Burrows-Wheeler algorithms. The compressor is a bit-level predictive arithmetic which using a 2 layer network with muti-input and one output. The arithmetic, according with the context constriction, improves the precision of prediction and reduces the coding time.
Key words arithmetic encoding; data compression; maximum entropy; neural network
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 基于強(qiáng)連接網(wǎng)絡(luò)圖的無(wú)損壓縮算法綜述 6次下載
- BP神經(jīng)網(wǎng)絡(luò)的研究進(jìn)展 5次下載
- 基于剪枝與量化的卷積神經(jīng)網(wǎng)絡(luò)壓縮算法 6次下載
- 基于不同神經(jīng)網(wǎng)絡(luò)的文本分類(lèi)方法研究對(duì)比 48次下載
- 基于循環(huán)神經(jīng)網(wǎng)絡(luò)的空間軌跡壓縮算法 5次下載
- 緊湊的卷積神經(jīng)網(wǎng)絡(luò)模型研究綜述 9次下載
- 基于深度神經(jīng)網(wǎng)絡(luò)的端到端圖像壓縮方法 16次下載
- 神經(jīng)網(wǎng)絡(luò)圖像壓縮算法的FPGA實(shí)現(xiàn)技術(shù)研究論文免費(fèi)下載 11次下載
- 綜述深度神經(jīng)網(wǎng)絡(luò)的解釋方法及發(fā)展趨勢(shì) 18次下載
- 基于深度神經(jīng)網(wǎng)絡(luò)的文本分類(lèi)分析 37次下載
- 基于改進(jìn)SPIHT的圖像無(wú)損壓縮算法研究_武永紅 1次下載
- 機(jī)載圖像無(wú)損近無(wú)損壓縮方案及其FPGA實(shí)現(xiàn) 5次下載
- 基于FPGA的數(shù)據(jù)實(shí)時(shí)無(wú)損壓縮系統(tǒng) 63次下載
- 常用數(shù)據(jù)無(wú)損壓縮算法分析 0次下載
- 采用BP神經(jīng)網(wǎng)絡(luò)的通用數(shù)據(jù)壓縮方案
- 卷積神經(jīng)網(wǎng)絡(luò)的壓縮方法 157次閱讀
- 遞歸神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)方法 186次閱讀
- BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系 530次閱讀
- BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別 338次閱讀
- 全連接前饋神經(jīng)網(wǎng)絡(luò)與前饋神經(jīng)網(wǎng)絡(luò)的比較 7417次閱讀
- 人工神經(jīng)網(wǎng)絡(luò)的案例分析 471次閱讀
- 神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型的構(gòu)建方法 375次閱讀
- 深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別 307次閱讀
- 深度神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)方法 235次閱讀
- 詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 1557次閱讀
- 邊緣計(jì)算中深度神經(jīng)網(wǎng)絡(luò)剪枝壓縮的研究 2880次閱讀
- BP神經(jīng)網(wǎng)絡(luò)概述 4.4w次閱讀
- 無(wú)損壓縮算法有哪些 1.8w次閱讀
- 有損壓縮和無(wú)損壓縮的區(qū)別 5w次閱讀
- 基于FPGA的LZO實(shí)時(shí)無(wú)損壓縮的硬件設(shè)計(jì) 3105次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費(fèi)下載
- 0.00 MB | 1490次下載 | 免費(fèi)
- 2單片機(jī)典型實(shí)例介紹
- 18.19 MB | 93次下載 | 1 積分
- 3S7-200PLC編程實(shí)例詳細(xì)資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識(shí)別和講解說(shuō)明
- 4.28 MB | 18次下載 | 4 積分
- 5開(kāi)關(guān)電源原理及各功能電路詳解
- 0.38 MB | 11次下載 | 免費(fèi)
- 6100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 7基于AT89C2051/4051單片機(jī)編程器的實(shí)驗(yàn)
- 0.11 MB | 4次下載 | 免費(fèi)
- 8基于單片機(jī)的紅外風(fēng)扇遙控
- 0.23 MB | 3次下載 | 免費(fèi)
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費(fèi)
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費(fèi)
- 4LabView 8.0 專(zhuān)業(yè)版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費(fèi)
- 5555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33562次下載 | 免費(fèi)
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費(fèi)
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費(fèi)
- 8開(kāi)關(guān)電源設(shè)計(jì)實(shí)例指南
- 未知 | 21539次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費(fèi)
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537791次下載 | 免費(fèi)
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費(fèi)
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費(fèi)
- 6電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191183次下載 | 免費(fèi)
- 7十天學(xué)會(huì)AVR單片機(jī)與C語(yǔ)言視頻教程 下載
- 158M | 183277次下載 | 免費(fèi)
- 8proe5.0野火版下載(中文版免費(fèi)下載)
- 未知 | 138039次下載 | 免費(fèi)
評(píng)論
查看更多