了解高斯過程 (GP) 對(duì)于推理模型構(gòu)建和泛化以及在各種應(yīng)用中實(shí)現(xiàn)最先進(jìn)的性能非常重要,包括主動(dòng)學(xué)習(xí)和深度學(xué)習(xí)中的超參數(shù)調(diào)整。全科醫(yī)生無處不在,了解它們是什么以及我們?nèi)绾问褂盟鼈兎衔覀兊睦妗?/font>
在本節(jié)中,我們介紹高斯過程先驗(yàn)函數(shù)。在下一個(gè)筆記本中,我們將展示如何使用這些先驗(yàn)進(jìn)行后驗(yàn)推理和做出預(yù)測(cè)。下一節(jié)可以被視為“GPs in a nutshell”,快速給出在實(shí)踐中應(yīng)用高斯過程所需的內(nèi)容。
18.2.1。定義
高斯過程被定義為隨機(jī)變量的集合,其中任何有限數(shù)量的隨機(jī)變量都服從聯(lián)合高斯分布。如果一個(gè)函數(shù)f(x)是一個(gè)高斯過程,具有均值函數(shù) m(x)和協(xié)方差函數(shù)或內(nèi)核 k(x,x′), f(x)~GP(m,k),然后在任何輸入點(diǎn)集合處查詢的任何函數(shù)值集合x(時(shí)間、空間位置、圖像像素等),具有均值向量的聯(lián)合多元高斯分布μ和協(xié)方差矩陣 K:f(x1),…,f(xn)~N(μ,K), 在哪里 μi=E[f(xi)]=m(xi)和 Kij=Cov(f(xi),f(xj))=k(xi,xj).
這個(gè)定義看似抽象且難以理解,但高斯過程實(shí)際上是非常簡(jiǎn)單的對(duì)象。任何功能
和w從高斯(正態(tài))分布中得出,和 ?是基函數(shù)的任何向量,例如 ?(x)=(1,x,x2,...,xd)?, 是一個(gè)高斯過程。此外,任何高斯過程f(x)都可以表示為方程(18.2.1)的形式。讓我們考慮一些具體的例子,開始熟悉高斯過程,然后我們才能體會(huì)到它們是多么簡(jiǎn)單和有用。
18.2.2。一個(gè)簡(jiǎn)單的高斯過程
認(rèn)為f(x)=w0+w1x, 和 w0,w1~N(0,1), 和w0,w1,x都在一個(gè)維度上。我們可以把這個(gè)函數(shù)等價(jià)地寫成內(nèi)積f(x)=(w0,w1)(1,x)?. 在 上面的(18.2.1)中,w=(w0,w1)?和 ?(x)=(1,x)?.
對(duì)于任何x,f(x)是兩個(gè)高斯隨機(jī)變量的總和。由于高斯在加法下是封閉的,f(x)也是任意的高斯隨機(jī)變量x. 事實(shí)上,我們可以計(jì)算任何特定的x那
評(píng)論
查看更多