資料介紹
In recent years, multiple-input multiple-output (MIMO) wireless technologies have captured a
lot of research interest, given the capacity increase achievable with such schemes [1, 2]. On
the downlink, MIMO exploits multiple antennas at both the base station transmitter and the user terminal receiver. In the transmitter, the highspeed data stream intended for the user is encoded in time and space across multiple transmit antennas. In doing so, the same carrier (or spectral resource) is reused at each antenna. Signal processing is then used to decode the composite signals received at the mobile user’s terminal.
The spatial antenna processing at the terminal is able to unravel the effects of complex multipath scattering, and fundamentally provides access to parallel independent propagation paths between the base station and the user. Thus, instead of having access to a single data pipe, as with conventional wireless system design, a wireless system exploiting MIMO technology is able to capitalize on the presence of multiple parallel pipes, improving both the data rate and system capacity. MIMO has now reached a certain maturity, and is being investigated in the Third Generation Partnership Projects (3GPP and 3GPP2) for the evolution of the Universal Mobile Telecommunications System (UMTS) and cdma2000 systems, respectively.
Another technology that has been considered by the industry for 3G systems evolution is
orthogonal frequency-division multiplexing (OFDM). The Wireless World Research Forum
(WWRF) considers OFDM the most important technology for a future public cellular radio access technology [3]. Several wireless networking (e.g., IEEE 802.11 and 802.16) and wireless
broadcasting systems (e.g. DVB-T, DAB) have already been developed using OFDM technology and are now available in mature commercial
products.
Since data is multiplexed on many narrowband subcarriers, OFDM is very robust to typical
multipath fading (i.e., frequency-selective) channels. Furthermore, the subcarriers can easily be generated at the transmitter and recovered at the receiver, using highly efficient digital signal processing based on fast Fourier transform (FFT).
lot of research interest, given the capacity increase achievable with such schemes [1, 2]. On
the downlink, MIMO exploits multiple antennas at both the base station transmitter and the user terminal receiver. In the transmitter, the highspeed data stream intended for the user is encoded in time and space across multiple transmit antennas. In doing so, the same carrier (or spectral resource) is reused at each antenna. Signal processing is then used to decode the composite signals received at the mobile user’s terminal.
The spatial antenna processing at the terminal is able to unravel the effects of complex multipath scattering, and fundamentally provides access to parallel independent propagation paths between the base station and the user. Thus, instead of having access to a single data pipe, as with conventional wireless system design, a wireless system exploiting MIMO technology is able to capitalize on the presence of multiple parallel pipes, improving both the data rate and system capacity. MIMO has now reached a certain maturity, and is being investigated in the Third Generation Partnership Projects (3GPP and 3GPP2) for the evolution of the Universal Mobile Telecommunications System (UMTS) and cdma2000 systems, respectively.
Another technology that has been considered by the industry for 3G systems evolution is
orthogonal frequency-division multiplexing (OFDM). The Wireless World Research Forum
(WWRF) considers OFDM the most important technology for a future public cellular radio access technology [3]. Several wireless networking (e.g., IEEE 802.11 and 802.16) and wireless
broadcasting systems (e.g. DVB-T, DAB) have already been developed using OFDM technology and are now available in mature commercial
products.
Since data is multiplexed on many narrowband subcarriers, OFDM is very robust to typical
multipath fading (i.e., frequency-selective) channels. Furthermore, the subcarriers can easily be generated at the transmitter and recovered at the receiver, using highly efficient digital signal processing based on fast Fourier transform (FFT).
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 基于FPGA的MIMO-OFDM基帶系統(tǒng)發(fā)射機(jī)的設(shè)計(jì)
- MIMO-OFDM無(wú)線通信技術(shù)(Matlab代碼實(shí)現(xiàn))
- 對(duì)MIMO-OFDM無(wú)線系統(tǒng)的誤碼率評(píng)估 3次下載
- 802.16寬帶無(wú)線城域網(wǎng)媒體接入控制協(xié)議 35次下載
- 城域網(wǎng)建設(shè)主要技術(shù)應(yīng)用 42次下載
- 新型城域網(wǎng)的技術(shù)選擇 34次下載
- MIMO-OFDM無(wú)線通信系統(tǒng)的設(shè)計(jì)與仿真 163次下載
- WiMAX無(wú)線城域網(wǎng)的應(yīng)用研究
- 基于塊調(diào)制的MIMO-OFDM系統(tǒng)
- MIMO-OFDM系統(tǒng)中具有QoS保證的動(dòng)態(tài)資源分配
- 基于應(yīng)用時(shí)間窗多用戶MIMO-OFDM系統(tǒng)中的比例公平算法
- 降低MIMO-OFDM系統(tǒng)PAPR的一種改進(jìn)方法
- 基于城域網(wǎng)的SAN承載技術(shù)探討
- 城域網(wǎng)地址規(guī)劃
- MIMO-OFDM技術(shù)
- 下一代射頻芯片工藝路在何方? 956次閱讀
- 下一代硅光子技術(shù)會(huì)是什么樣子? 529次閱讀
- 下一代航空航天和國(guó)防系統(tǒng)的多功能設(shè)計(jì) 792次閱讀
- 下一代軍事通信挑戰(zhàn) 848次閱讀
- 適用于分布式MIMO系統(tǒng)中的時(shí)間頻率同步算法研究 2556次閱讀
- MIMO-OFDM的工作原理及關(guān)鍵技術(shù)分析 1.5w次閱讀
- 采用能量檢測(cè)法實(shí)現(xiàn)OFDM系統(tǒng)的檢測(cè) 3426次閱讀
- OTN to CO助力運(yùn)營(yíng)商打造面向未來(lái)最佳體驗(yàn)城域承載網(wǎng) 2011次閱讀
- 城域網(wǎng)和廣域網(wǎng)的區(qū)別及聯(lián)系 2.3w次閱讀
- ofdm關(guān)鍵技術(shù)及應(yīng)用 2w次閱讀
- 下一代LTE基站發(fā)射機(jī)的RF IC集成設(shè)計(jì)策略解析 812次閱讀
- WiMAX:無(wú)線城域網(wǎng)的新銳 933次閱讀
- 下一代平板顯示:OLED、MICRO LED、QLED誰(shuí)將勝出? 1651次閱讀
- 透視802.11ax:解讀下一代無(wú)線網(wǎng)路標(biāo)準(zhǔn) 5586次閱讀
- OTN:城域網(wǎng)提速的最佳選擇 2995次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費(fèi)下載
- 0.00 MB | 1489次下載 | 免費(fèi)
- 2單片機(jī)典型實(shí)例介紹
- 18.19 MB | 92次下載 | 1 積分
- 3S7-200PLC編程實(shí)例詳細(xì)資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識(shí)別和講解說(shuō)明
- 4.28 MB | 18次下載 | 4 積分
- 5開(kāi)關(guān)電源原理及各功能電路詳解
- 0.38 MB | 10次下載 | 免費(fèi)
- 6基于AT89C2051/4051單片機(jī)編程器的實(shí)驗(yàn)
- 0.11 MB | 4次下載 | 免費(fèi)
- 7基于單片機(jī)和 SG3525的程控開(kāi)關(guān)電源設(shè)計(jì)
- 0.23 MB | 3次下載 | 免費(fèi)
- 8藍(lán)牙設(shè)備在嵌入式領(lǐng)域的廣泛應(yīng)用
- 0.63 MB | 3次下載 | 免費(fèi)
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費(fèi)
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費(fèi)
- 4LabView 8.0 專(zhuān)業(yè)版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費(fèi)
- 5555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33562次下載 | 免費(fèi)
- 6接口電路圖大全
- 未知 | 30319次下載 | 免費(fèi)
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費(fèi)
- 8開(kāi)關(guān)電源設(shè)計(jì)實(shí)例指南
- 未知 | 21539次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費(fèi)
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537791次下載 | 免費(fèi)
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費(fèi)
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 5Altium DXP2002下載入口
- 未知 | 233045次下載 | 免費(fèi)
- 6電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191183次下載 | 免費(fèi)
- 7十天學(xué)會(huì)AVR單片機(jī)與C語(yǔ)言視頻教程 下載
- 158M | 183277次下載 | 免費(fèi)
- 8proe5.0野火版下載(中文版免費(fèi)下載)
- 未知 | 138039次下載 | 免費(fèi)
評(píng)論
查看更多