電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>構(gòu)建深度學(xué)習(xí)模型的五個(gè)基本步驟

構(gòu)建深度學(xué)習(xí)模型的五個(gè)基本步驟

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

2023年使用樹莓派和替代品進(jìn)行深度學(xué)習(xí)

此頁(yè)面可幫助您在Raspberry Pi或Google Coral或Jetson Nano等替代品上構(gòu)建深度學(xué)習(xí)模式。有關(guān)深度學(xué)習(xí)及其限制的更多一般信息,請(qǐng)參閱深度學(xué)習(xí)。
2023-05-05 09:47:091995

深度學(xué)習(xí)解決方案的構(gòu)建方式及應(yīng)用

英特爾人工智能產(chǎn)品事業(yè)部,數(shù)據(jù)科學(xué)主任 Yinyin Liu 近日撰寫了一篇文章,介紹了深度學(xué)習(xí)為自然語(yǔ)言處理帶來的種種變化。有趣的大趨勢(shì)是首先產(chǎn)生在 CV 領(lǐng)域的技術(shù)也不斷用于 NLP,而深度學(xué)習(xí)解決方案的構(gòu)建方式也隨著時(shí)間在進(jìn)化。
2018-05-02 10:00:255766

如何才能高效地進(jìn)行深度學(xué)習(xí)模型訓(xùn)練?

分布式深度學(xué)習(xí)框架中,包括數(shù)據(jù)/模型切分、本地單機(jī)優(yōu)化算法訓(xùn)練、通信機(jī)制、和數(shù)據(jù)/模型聚合等模塊?,F(xiàn)有的算法一般采用隨機(jī)置亂切分的數(shù)據(jù)分配方式,隨機(jī)優(yōu)化算法(例如隨機(jī)梯度法)的本地訓(xùn)練算法,同步或者異步通信機(jī)制,以及參數(shù)平均的模型聚合方式。
2018-07-09 08:48:2213609

如何使用TensorFlow構(gòu)建機(jī)器學(xué)習(xí)模型

在這篇文章中,我將逐步講解如何使用 TensorFlow 創(chuàng)建一個(gè)簡(jiǎn)單的機(jī)器學(xué)習(xí)模型。
2024-01-08 09:25:34272

2017全國(guó)深度學(xué)習(xí)技術(shù)應(yīng)用大會(huì)

單位:中國(guó)電子學(xué)會(huì)學(xué)術(shù)交流中心  四、大會(huì)主席:王亮 中科院自動(dòng)化研究所  、大會(huì)交流形式  1.特邀演講:大會(huì)將邀請(qǐng)國(guó)內(nèi)深度學(xué)習(xí)技術(shù)領(lǐng)域的著名專家,就深度學(xué)習(xí)技術(shù)的應(yīng)用和最新動(dòng)態(tài)做特邀報(bào)告
2017-03-22 17:16:00

構(gòu)建個(gè)簡(jiǎn)單的裸機(jī)程序使用Arm DS-5

本教程將帶您完成創(chuàng)建、配置和構(gòu)建個(gè)簡(jiǎn)單的裸機(jī)程序使用Arm DS-5。要在應(yīng)用程序構(gòu)建完成后運(yùn)行它,本教程將帶您完成配置到以軟件實(shí)現(xiàn)的系統(tǒng)模型的調(diào)試連接的步驟。 在安裝并獲得使用DS-5的許可證后
2023-08-02 08:27:30

深度學(xué)習(xí)模型是如何創(chuàng)建的?

具有深度學(xué)習(xí)模型的嵌入式系統(tǒng)應(yīng)用程序帶來了巨大的好處。深度學(xué)習(xí)嵌入式系統(tǒng)已經(jīng)改變了各個(gè)行業(yè)的企業(yè)和組織。深度學(xué)習(xí)模型可以幫助實(shí)現(xiàn)工業(yè)流程自動(dòng)化,進(jìn)行實(shí)時(shí)分析以做出決策,甚至可以預(yù)測(cè)預(yù)警。這些AI
2021-10-27 06:34:15

深度學(xué)習(xí)DeepLearning實(shí)戰(zhàn)

測(cè)試)三、主講內(nèi)容1:課程一、強(qiáng)化學(xué)習(xí)簡(jiǎn)介課程二、強(qiáng)化學(xué)習(xí)基礎(chǔ)課程三、深度強(qiáng)化學(xué)習(xí)基礎(chǔ)課程四、多智能體深度強(qiáng)化學(xué)習(xí)課程、多任務(wù)深度強(qiáng)化學(xué)習(xí)課程六、強(qiáng)化學(xué)習(xí)應(yīng)用課程七、仿真實(shí)驗(yàn)課程八、輔助課程四、主講
2021-01-09 17:01:54

深度學(xué)習(xí)中過擬合/欠擬合的問題及解決方案

的數(shù)據(jù)可以對(duì)未來的數(shù)據(jù)進(jìn)行推測(cè)與模擬,因此都是使用歷史數(shù)據(jù)建立模型,即使用已經(jīng)產(chǎn)生的數(shù)據(jù)去訓(xùn)練,然后使用該模型去擬合未來的數(shù)據(jù)。 在我們機(jī)器學(xué)習(xí)深度學(xué)習(xí)的訓(xùn)練過程中,經(jīng)常會(huì)出現(xiàn)過擬合和欠擬合的現(xiàn)象。訓(xùn)練一開始,模型通常會(huì)欠擬合,所以會(huì)對(duì)模型進(jìn)行優(yōu)化,然而等到訓(xùn)練到一定程度的時(shí)候,就需要解決過擬合的問題了。
2021-01-28 06:57:47

深度學(xué)習(xí)介紹

在未來的某個(gè)時(shí)候,人們必定能夠相對(duì)自如地運(yùn)用人工智能,安全地駕車出行。這個(gè)時(shí)刻何時(shí)到來我無法預(yù)見;但我相信,彼時(shí)“智能”會(huì)顯現(xiàn)出更“切實(shí)”的意義。與此同時(shí),通過深度學(xué)習(xí)方法,人工智能的實(shí)際應(yīng)用能夠在
2022-11-11 07:55:50

深度學(xué)習(xí)在醫(yī)學(xué)圖像分割與病變識(shí)別中的應(yīng)用實(shí)戰(zhàn)

等方面具有重要意義。本文將介紹這一領(lǐng)域的背景、挑戰(zhàn),以及通過一個(gè)代碼實(shí)例展示如何利用深度學(xué)習(xí)方法進(jìn)行醫(yī)學(xué)圖像分割與病變識(shí)別。 背景與挑戰(zhàn)醫(yī)學(xué)圖像分割是將醫(yī)學(xué)影像中的結(jié)構(gòu)區(qū)域分離出來,以便醫(yī)生能夠更清晰
2023-09-04 11:11:23

深度學(xué)習(xí)在預(yù)測(cè)和健康管理中的應(yīng)用

方法方面的最新進(jìn)展,目的是發(fā)現(xiàn)研究差距并提出進(jìn)一步的改進(jìn)建議。在簡(jiǎn)要介紹了幾種深度學(xué)習(xí)模型之后,我們回顧并分析了使用深度學(xué)習(xí)進(jìn)行故障檢測(cè),診斷和預(yù)后的應(yīng)用。該調(diào)查驗(yàn)證了深度學(xué)習(xí)對(duì)PHM中各種類型的輸入
2021-07-12 06:46:47

深度學(xué)習(xí)存在哪些問題?

深度學(xué)習(xí)常用模型有哪些?深度學(xué)習(xí)常用軟件工具及平臺(tái)有哪些?深度學(xué)習(xí)存在哪些問題?
2021-10-14 08:20:47

深度學(xué)習(xí)技術(shù)的開發(fā)與應(yīng)用

時(shí)間安排大綱具體內(nèi)容實(shí)操案例三天關(guān)鍵點(diǎn)1.強(qiáng)化學(xué)習(xí)的發(fā)展歷程2.馬爾可夫決策過程3.動(dòng)態(tài)規(guī)劃4.無模型預(yù)測(cè)學(xué)習(xí)5.無模型控制學(xué)習(xí)6.價(jià)值函數(shù)逼近7.策略梯度方法8.深度強(qiáng)化學(xué)習(xí)-DQN算法系列9.
2022-04-21 14:57:39

深度強(qiáng)化學(xué)習(xí)實(shí)戰(zhàn)

測(cè)試)三、主講內(nèi)容1:課程一、強(qiáng)化學(xué)習(xí)簡(jiǎn)介課程二、強(qiáng)化學(xué)習(xí)基礎(chǔ)課程三、深度強(qiáng)化學(xué)習(xí)基礎(chǔ)課程四、多智能體深度強(qiáng)化學(xué)習(xí)課程、多任務(wù)深度強(qiáng)化學(xué)習(xí)課程六、強(qiáng)化學(xué)習(xí)應(yīng)用課程七、仿真實(shí)驗(yàn)課程八、輔助課程四、主講
2021-01-10 13:42:26

深度融合模型的特點(diǎn)

深度融合模型的特點(diǎn),背景深度學(xué)習(xí)模型在訓(xùn)練完成之后,部署并應(yīng)用在生產(chǎn)環(huán)境的這一步至關(guān)重要,畢竟訓(xùn)練出來的模型不能只接受一些公開數(shù)據(jù)集和榜單的檢驗(yàn),還需要在真正的業(yè)務(wù)場(chǎng)景下創(chuàng)造價(jià)值,不能只是為了PR而
2021-07-16 06:08:20

AI工程師 10 個(gè)深度學(xué)習(xí)方法

》(Playing Atari with Deep Reinforcement Learning) 提出了第一個(gè)可以成功地通過強(qiáng)化學(xué)習(xí)從高維感官輸入中直接學(xué)習(xí)控制策略的深度學(xué)習(xí)模型。通過研究和學(xué)習(xí),我
2019-03-07 20:17:28

LabVIEW自帶深度學(xué)習(xí),凍結(jié)Tensorflow完成深度學(xué)習(xí)。資料下載

瀏覽不同的圖像。最小得分閾值輸入,它確定要覆蓋在圖像顯示上的缺陷。硬件和軟件要求LabVIEW完整開發(fā)系統(tǒng)64位2018或更高版本視覺模塊2018或更高版本實(shí)現(xiàn)或執(zhí)行代碼的步驟運(yùn)行深度學(xué)習(xí)對(duì)象檢測(cè)
2020-07-29 17:41:31

Mali GPU支持tensorflow或者caffe等深度學(xué)習(xí)模型

Mali GPU 支持tensorflow或者caffe等深度學(xué)習(xí)模型嗎? 好像caffe2go和tensorflow lit可以部署到ARM,但不知道是否支持在GPU運(yùn)行?我希望把訓(xùn)練
2022-09-16 14:13:01

Nanopi深度學(xué)習(xí)之路(1)深度學(xué)習(xí)框架分析

的初學(xué)者。日記目標(biāo)是構(gòu)建深度學(xué)習(xí)環(huán)境,使用的是TensorFlow后端的Keras,Keras 是一個(gè)用 Python 編寫的高級(jí)神經(jīng)網(wǎng)絡(luò) API,它能夠以 TensorFlow, CNTK, 或者
2018-06-04 22:32:12

TDA4對(duì)深度學(xué)習(xí)的重要性

深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)子集,常用于自然語(yǔ)言處理,計(jì)算機(jī)視覺等領(lǐng)域,與眾不同之處在于,DL(Deep Learning )算法可以自動(dòng)從圖像、視頻或文本等數(shù)據(jù)中學(xué)習(xí)數(shù)據(jù)特征。DL可以直接從數(shù)據(jù)中學(xué)習(xí)
2022-11-03 06:53:11

labview+yolov4+tensorflow+openvion深度學(xué)習(xí)

:圖像預(yù)處理步驟繁多且具有強(qiáng)烈的針對(duì)性,魯棒性差;多種算法計(jì)算量驚人且無法精確的檢測(cè)缺陷的大小和形狀。而深度學(xué)習(xí)可以直接通過學(xué)習(xí)數(shù)據(jù)更新參數(shù),避免了人工設(shè)計(jì)復(fù)雜的算法流程,并且有著極高的魯棒性和精度
2021-05-10 22:33:46

labview實(shí)現(xiàn)深度學(xué)習(xí),還在用python?

神經(jīng)元結(jié)構(gòu),用計(jì)算機(jī)構(gòu)造的簡(jiǎn)化了的人腦神經(jīng)網(wǎng)絡(luò)模型,其主要用于圖像分類和識(shí)別。labview是一個(gè)廣泛應(yīng)用于工業(yè)自動(dòng)化測(cè)控領(lǐng)域的編程平臺(tái),其具有很多不同行業(yè)的算法庫(kù),例如vision視覺庫(kù),集成了常用的視覺
2020-07-23 20:33:10

labview測(cè)試tensorflow深度學(xué)習(xí)SSD模型識(shí)別物體

安裝labview2019 vision,自帶深度學(xué)習(xí)推理工具,支持tensorflow模型。配置好python下tensorflow環(huán)境配置好object_detection API下載SSD模型
2020-08-16 17:21:38

labview調(diào)用深度學(xué)習(xí)tensorflow模型非常簡(jiǎn)單,附上源碼和模型

本帖最后由 wcl86 于 2021-9-9 10:39 編輯 `labview調(diào)用深度學(xué)習(xí)tensorflow模型非常簡(jiǎn)單,效果如下,附上源碼和訓(xùn)練過的模型:[hide][/hide
2021-06-03 16:38:25

  華為云深度學(xué)習(xí)服務(wù),讓企業(yè)智能從此不求人

深度學(xué)習(xí)訓(xùn)練的第一個(gè)困難是技術(shù)難度高。企業(yè)要進(jìn)行深度學(xué)習(xí)模型訓(xùn)練,有很高的技術(shù)門檻。比如要自己搭建深度學(xué)習(xí)平臺(tái),要有懂得編程的技術(shù)人員,還要有海量的訓(xùn)練數(shù)據(jù)等等。而華為云深度學(xué)習(xí)服務(wù),可以提供深度
2018-08-02 20:44:09

【NanoPi K1 Plus試用體驗(yàn)】搭建深度學(xué)習(xí)框架

近幾年各種深度學(xué)習(xí)框架涌現(xiàn),大家可能很難從眾多的深度學(xué)習(xí)框架中選擇一個(gè)合適的框架進(jìn)行學(xué)習(xí)。對(duì)于深度學(xué)習(xí)的初學(xué)者,或者覺得Tensorflow,Caffe等框架學(xué)習(xí)困難難以上手的人,可以考慮學(xué)習(xí)
2018-07-17 11:40:31

【洞幺邦】基于深度學(xué)習(xí)的GAN應(yīng)用風(fēng)格遷移

`? GAN 是什么?:Generative Adversarial Network我們可以這樣定義:“對(duì)抗生成網(wǎng)絡(luò)(GAN)是一種深度學(xué)習(xí)模型,模型通過框架中至少兩個(gè)框架:生成模型和判別模型的互相
2021-07-01 10:53:46

【詳解】FPGA:深度學(xué)習(xí)的未來?

(FPGA)提供了另一個(gè)值得探究的解決方案。日漸流行的FPGA設(shè)計(jì)工具使其對(duì)深度學(xué)習(xí)領(lǐng)域經(jīng)常使用的上層軟件兼容性更強(qiáng),使得FPGA更容易為模型搭建和部署者所用。FPGA架構(gòu)靈活,使得研究者能夠在諸如GPU
2018-08-13 09:33:30

為什么說FPGA是機(jī)器深度學(xué)習(xí)的未來?

都出現(xiàn)了重大突破。深度學(xué)習(xí)是這些領(lǐng)域中所最常使用的技術(shù),也被業(yè)界大為關(guān)注。然而,深度學(xué)習(xí)模型需要極為大量的數(shù)據(jù)和計(jì)算能力,只有更好的硬件加速條件,才能滿足現(xiàn)有數(shù)據(jù)和模型規(guī)模繼續(xù)擴(kuò)大的需求?! ?FPGA
2019-10-10 06:45:41

什么是深度學(xué)習(xí)?

深度學(xué)習(xí)是什么意思
2020-11-11 06:58:03

什么是深度學(xué)習(xí)?使用FPGA進(jìn)行深度學(xué)習(xí)的好處?

什么是深度學(xué)習(xí)為了解釋深度學(xué)習(xí),有必要了解神經(jīng)網(wǎng)絡(luò)。神經(jīng)網(wǎng)絡(luò)是一種模擬人腦的神經(jīng)元和神經(jīng)網(wǎng)絡(luò)的計(jì)算模型。作為具體示例,讓我們考慮一個(gè)輸入圖像并識(shí)別圖像中對(duì)象類別的示例。這個(gè)例子對(duì)應(yīng)機(jī)器學(xué)習(xí)中的分類
2023-02-17 16:56:59

全網(wǎng)唯一一套labview深度學(xué)習(xí)教程:tensorflow+目標(biāo)檢測(cè):龍哥教你學(xué)視覺—LabVIEW深度學(xué)習(xí)教程

的簡(jiǎn)單化圖像信息;隨后利用數(shù)學(xué)形態(tài)學(xué)、傅里葉變換、Gabor 變換等算法以及機(jī)器學(xué)習(xí)模型完成缺陷的標(biāo)記與檢測(cè)。上述傳統(tǒng)算法在某些特定的應(yīng)用中已經(jīng)取得了較好的效果,但仍然存在許多不足。例如:圖像預(yù)處理步驟
2020-08-10 10:38:12

動(dòng)態(tài)分配多任務(wù)資源的移動(dòng)端深度學(xué)習(xí)框架

非常受歡迎,而且已被用于開發(fā)最先進(jìn)的移動(dòng)深度學(xué)習(xí)系統(tǒng),但它有一個(gè)重大缺陷:由于應(yīng)用程序開發(fā)者獨(dú)立開發(fā)自己的應(yīng)用,壓縮模型的資源-準(zhǔn)確率權(quán)衡在應(yīng)用開發(fā)階段的靜態(tài)資源預(yù)算的基礎(chǔ)上就被預(yù)先確定了,在應(yīng)用部署
2018-10-31 16:32:24

如何構(gòu)建詞向量模型?

如何構(gòu)建詞向量模型?
2021-11-10 07:43:00

如何使用MATLAB幫助相關(guān)人員執(zhí)行深度學(xué)習(xí)任務(wù)

MATLAB支持的模型有哪些呢?如何使用MATLAB幫助相關(guān)人員執(zhí)行深度學(xué)習(xí)任務(wù)呢?
2021-11-22 07:48:19

如何在交通領(lǐng)域構(gòu)建基于圖的深度學(xué)習(xí)架構(gòu)

How to Build a Graph-Based Deep Learning Architecture in Traf?c Domain: A Survey綜述:如何在交通領(lǐng)域構(gòu)建基于圖的深度
2021-08-31 08:05:01

淺談深度學(xué)習(xí)之TensorFlow

神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)的概念,但為了完整起見,我們將在這里介紹基礎(chǔ)知識(shí),并探討 TensorFlow 的哪些特性使其成為深度學(xué)習(xí)的熱門選擇。神經(jīng)網(wǎng)絡(luò)是一個(gè)生物啟發(fā)式的計(jì)算和學(xué)習(xí)模型。像生物神經(jīng)元一樣,它們從其他
2020-07-28 14:34:04

部署基于嵌入的機(jī)器學(xué)習(xí)模型

還需要處理模型的更新。模型更新的速度甚至可以非常高,因?yàn)?b class="flag-6" style="color: red">模型需要定期地根據(jù)最新的數(shù)據(jù)進(jìn)行再訓(xùn)練。  本文將描述一種更復(fù)雜的機(jī)器學(xué)習(xí)系統(tǒng)的一般部署模式,這些系統(tǒng)是圍繞基于嵌入的模型構(gòu)建的。要理解為什么這些
2022-11-02 15:09:52

基于深度學(xué)習(xí)的多尺幅深度網(wǎng)絡(luò)監(jiān)督模型

針對(duì)場(chǎng)景標(biāo)注中如何產(chǎn)生良好的內(nèi)部視覺信息表達(dá)和有效利用上下文語(yǔ)義信息兩個(gè)至關(guān)重要的問題,提出一種基于深度學(xué)習(xí)的多尺度深度網(wǎng)絡(luò)監(jiān)督模型。與傳統(tǒng)多尺度方法不同,模型主要由兩個(gè)深度卷積網(wǎng)絡(luò)組成:首先網(wǎng)絡(luò)
2017-11-28 14:22:100

模型驅(qū)動(dòng)深度學(xué)習(xí)的標(biāo)準(zhǔn)流程與學(xué)習(xí)方法解析

模型驅(qū)動(dòng)的深度學(xué)習(xí)方法近年來,深度學(xué)習(xí)在人工智能領(lǐng)域一系列困難問題上取得了突破性成功應(yīng)用。
2018-01-24 11:30:134608

一種新的目標(biāo)分類特征深度學(xué)習(xí)模型

受限和高識(shí)別率要求,提取圖像的局部方向梯度直方圖( HOG)特征,構(gòu)建稀疏自編碼器棧對(duì)HOG特征進(jìn)行深層次編碼,設(shè)計(jì)Softmax多分類器對(duì)所抽取的特征進(jìn)行分類。在深度神經(jīng)網(wǎng)絡(luò)模型學(xué)習(xí)過程中,引入最小化各層結(jié)構(gòu)風(fēng)險(xiǎn)和微調(diào)全網(wǎng)
2018-03-20 17:30:420

根據(jù)美團(tuán)“猜你喜歡”來深度學(xué)習(xí)排序模型實(shí)踐

本文將主要介紹深度學(xué)習(xí)模型在美團(tuán)平臺(tái)推薦排序場(chǎng)景下的應(yīng)用和探索。
2018-04-02 09:35:246070

Verizon采用NVIDIA Metropolis借力深度學(xué)習(xí)構(gòu)建更安全城市

通過采用NVIDIA Metropolis端到云視頻平臺(tái),Verizon公司打造了一套深度學(xué)習(xí)應(yīng)用,以構(gòu)建更安全、更智能、更綠色的城市。
2018-04-17 11:04:27856

關(guān)于如何從零開始構(gòu)建深度學(xué)習(xí)項(xiàng)目的詳細(xì)教程

第一部分:?jiǎn)?dòng)一個(gè)深度學(xué)習(xí)項(xiàng)目 第二部分:創(chuàng)建一個(gè)深度學(xué)習(xí)數(shù)據(jù)集 第三部分:設(shè)計(jì)深度模型 第四部分:可視化深度網(wǎng)絡(luò)模型及度量指標(biāo) 第五部分:深度學(xué)習(xí)網(wǎng)絡(luò)中的調(diào)試 第六部分:改善深度學(xué)習(xí)模型性能及網(wǎng)絡(luò)調(diào)參
2018-04-19 15:21:233520

淺論學(xué)習(xí)深度學(xué)習(xí)的四個(gè)步驟

深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究。含多隱層的多層感知器就是一種深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示。
2018-10-07 15:19:0011904

如何使用英特爾深度學(xué)習(xí)SDK解決問題

了解如何使用英特爾?深度學(xué)習(xí)SDK輕松插入,訓(xùn)練和部署深度學(xué)習(xí)模型,以解決圖像和文本分析問題。
2018-11-08 06:25:002992

在可擴(kuò)展的分布式深度學(xué)習(xí)中使用Python

學(xué)習(xí)使用neon?在本地實(shí)施深度學(xué)習(xí)模型
2018-11-05 06:46:002227

基于深度學(xué)習(xí)模型的點(diǎn)云目標(biāo)檢測(cè)及ROS實(shí)現(xiàn)

近年來,隨著深度學(xué)習(xí)在圖像視覺領(lǐng)域的發(fā)展,一類基于單純的深度學(xué)習(xí)模型的點(diǎn)云目標(biāo)檢測(cè)方法被提出和應(yīng)用,本文將詳細(xì)介紹其中一種模型——SqueezeSeg,并且使用ROS實(shí)現(xiàn)該模型的實(shí)時(shí)目標(biāo)檢測(cè)。
2018-11-05 16:47:2917181

針對(duì)線性回歸模型深度學(xué)習(xí)模型,介紹了確定訓(xùn)練數(shù)據(jù)集規(guī)模的方法

具體來看,對(duì)于傳統(tǒng)的機(jī)器學(xué)習(xí)算法,模型的表現(xiàn)先是遵循冪定律(power law),之后趨于平緩;而對(duì)于深度學(xué)習(xí),該問題還在持續(xù)不斷地研究中,不過圖一為目前較為一致的結(jié)論,即隨著數(shù)據(jù)規(guī)模的增長(zhǎng),深度
2019-05-05 11:03:315747

深度學(xué)習(xí)模型壓縮與加速綜述

目前在深度學(xué)習(xí)領(lǐng)域分類兩個(gè)派別,一派為學(xué)院派,研究強(qiáng)大、復(fù)雜的模型網(wǎng)絡(luò)和實(shí)驗(yàn)方法,為了追求更高的性能;另一派為工程派,旨在將算法更穩(wěn)定、高效的落地在硬件平臺(tái)上,效率是其追求的目標(biāo)。復(fù)雜的模型固然具有
2019-06-08 17:26:004836

回顧3年來的所有主流深度學(xué)習(xí)CTR模型

微軟于2016年提出的Deep Crossing可以說是深度學(xué)習(xí)CTR模型的最典型和基礎(chǔ)性的模型。如圖2的模型結(jié)構(gòu)圖所示,它涵蓋了深度CTR模型最典型的要素,即通過加入embedding層將稀疏特征轉(zhuǎn)化為低維稠密特征,用stacking layer
2019-07-18 14:33:165870

深度學(xué)習(xí)模型小型化處理的五種方法

現(xiàn)在深度學(xué)習(xí)模型開始走向應(yīng)用,因此我們需要把深度學(xué)習(xí)網(wǎng)絡(luò)和模型部署到一些硬件上,而現(xiàn)有一些模型的參數(shù)量由于過大,會(huì)導(dǎo)致在一些硬件上的運(yùn)行速度很慢,所以我們需要對(duì)深度學(xué)習(xí)模型進(jìn)行小型化處理。
2020-01-28 17:40:003658

晶心科技和Deeplite攜手合作高度優(yōu)化深度學(xué)習(xí)模型解決方案

晶心科技今日宣布將攜手合作,在基于AndeStar? V5架構(gòu)的晶心RISC-V CPU核心上配置高度優(yōu)化的深度學(xué)習(xí)模型,使AI深度學(xué)習(xí)模型變得更輕巧、快速和節(jié)能。
2019-12-31 16:30:111002

如何讓深度學(xué)習(xí)變得簡(jiǎn)單

在Cortex,用戶推出了基于深度學(xué)習(xí)的新一代產(chǎn)品,與以前不同的是,這些產(chǎn)品并非都是使用獨(dú)一無二的模型架構(gòu)構(gòu)建的。
2020-03-19 20:08:58614

機(jī)器學(xué)習(xí)模型切實(shí)可行的優(yōu)化步驟

這篇文章提供了可以采取的切實(shí)可行的步驟來識(shí)別和修復(fù)機(jī)器學(xué)習(xí)模型的訓(xùn)練、泛化和優(yōu)化問題。
2020-05-04 12:08:002347

如何使用深度學(xué)習(xí)實(shí)現(xiàn)語(yǔ)音聲學(xué)模型的研究

的分析識(shí)別更是研究的重中之重。近年來深 10 度學(xué)習(xí)模型的廣泛發(fā)展和計(jì)算能力的大幅提升對(duì)語(yǔ)音識(shí)別技術(shù)的提升起到了關(guān)鍵作用。本文立足于語(yǔ)音識(shí)別與深度學(xué)習(xí)理論緊密結(jié)合,針對(duì)如何利用深度學(xué)習(xí)模型搭建區(qū)分能力更強(qiáng)魯棒性更
2020-05-09 08:00:0041

如何才能正確的構(gòu)建機(jī)器學(xué)習(xí)模型

組織構(gòu)建一個(gè)可行的、可靠的、敏捷的機(jī)器學(xué)習(xí)模型來簡(jiǎn)化操作和支持其業(yè)務(wù)計(jì)劃需要耐心、準(zhǔn)備以及毅力。各種組織都在為各行業(yè)中的眾多應(yīng)用實(shí)施人工智能項(xiàng)目。這些應(yīng)用包括預(yù)測(cè)分析、模式識(shí)別系統(tǒng)、自主系統(tǒng)、會(huì)話
2021-01-11 19:25:0014

深度學(xué)習(xí)模型的對(duì)抗攻擊及防御措施

深度學(xué)習(xí)作為人工智能技術(shù)的重要組成部分,被廣泛應(yīng)用于計(jì)算機(jī)視覺和自然語(yǔ)言處理等領(lǐng)域。盡管深度學(xué)習(xí)在圖像分類和目標(biāo)檢測(cè)等任務(wù)中取得了較好性能,但是對(duì)抗攻擊的存在對(duì)深度學(xué)習(xí)模型的安全應(yīng)用構(gòu)成了潛在威脅
2021-03-12 13:45:5374

綜述深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)模型應(yīng)用及發(fā)展

深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢(shì),作為一個(gè)十余年來快速發(fā)展的嶄新領(lǐng)域,越來越受到研究者的關(guān)注。卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型深度學(xué)習(xí)模型中最重要的一種經(jīng)典結(jié)構(gòu),其性能在近年來深度學(xué)習(xí)任務(wù)
2021-04-02 15:29:0420

深度模型中的優(yōu)化與學(xué)習(xí)課件下載

深度模型中的優(yōu)化與學(xué)習(xí)課件下載
2021-04-07 16:21:013

基于深度學(xué)習(xí)的圖像修復(fù)模型及實(shí)驗(yàn)對(duì)比

深度學(xué)習(xí)技術(shù)在解決¨大面積缺失圖像修復(fù)”問題時(shí)具有重要作用并帶來了深遠(yuǎn)影響,文中在簡(jiǎn)要介紹傳統(tǒng)圖像修復(fù)方法的基礎(chǔ)上,重點(diǎn)介紹了基于深度學(xué)習(xí)的修復(fù)模型,主要包括模型分類、優(yōu)缺點(diǎn)對(duì)比、適用范圍和在常用數(shù)據(jù)集上的
2021-04-08 09:38:0020

模型深度強(qiáng)化學(xué)習(xí)應(yīng)用研究綜述

深度強(qiáng)化學(xué)習(xí)(DRL)作為機(jī)器學(xué)習(xí)的重要分攴,在 Alphago擊敗人類后受到了廣泛關(guān)注。DRL以種試錯(cuò)機(jī)制與環(huán)境進(jìn)行交互,并通過最大化累積獎(jiǎng)賞最終得到最優(yōu)策略。強(qiáng)化學(xué)習(xí)可分為無模型強(qiáng)化學(xué)習(xí)模型
2021-04-12 11:01:529

基于預(yù)訓(xùn)練模型和長(zhǎng)短期記憶網(wǎng)絡(luò)的深度學(xué)習(xí)模型

作為模型的初始化詞向量。但是,隨機(jī)詞向量存在不具備語(yǔ)乂和語(yǔ)法信息的缺點(diǎn);預(yù)訓(xùn)練詞向量存在¨一詞-乂”的缺點(diǎn),無法為模型提供具備上下文依賴的詞向量。針對(duì)該問題,提岀了一種基于預(yù)訓(xùn)練模型BERT和長(zhǎng)短期記憶網(wǎng)絡(luò)的深度學(xué)習(xí)
2021-04-20 14:29:0619

六個(gè)構(gòu)建機(jī)器學(xué)習(xí)模型需避免的錯(cuò)誤

近年來,機(jī)器學(xué)習(xí)在學(xué)術(shù)研究領(lǐng)域和實(shí)際應(yīng)用領(lǐng)域得到越來越多的關(guān)注。但構(gòu)建機(jī)器學(xué)習(xí)模型不是一件簡(jiǎn)單的事情,它需要大量的知識(shí)和技能以及豐富的經(jīng)驗(yàn),才能使模型在多種場(chǎng)景下發(fā)揮功效。正確的機(jī)器學(xué)習(xí)模型要以數(shù)據(jù)
2021-05-05 16:39:001238

基于深度強(qiáng)化學(xué)習(xí)仿真集成的壓邊力控制模型

壓邊為改善板料拉深制造的成品質(zhì)量,釆用深度強(qiáng)化學(xué)習(xí)的方法進(jìn)行拉深過程旳壓邊力優(yōu)化控制。提岀一種基于深度強(qiáng)化學(xué)習(xí)與有限元仿真集成的壓邊力控制模型,結(jié)合深度神經(jīng)網(wǎng)絡(luò)的感知能力與強(qiáng)化學(xué)習(xí)的決策能力,進(jìn)行
2021-05-27 10:32:390

什么?不用GPU也能加速你的YOLOv3深度學(xué)習(xí)模型

你還在為神經(jīng)網(wǎng)絡(luò)模型里的冗余信息煩惱嗎? 或者手上只有CPU,對(duì)一些只能用昂貴的GPU建立的深度學(xué)習(xí)模型“望眼欲穿”嗎? 最近,創(chuàng)業(yè)公司Neural Magic帶來了一種名叫新的稀疏化方法,可以幫你
2021-06-10 15:33:021975

基于評(píng)分矩陣與評(píng)論文本的深度學(xué)習(xí)模型

基于評(píng)分矩陣與評(píng)論文本的深度學(xué)習(xí)模型
2021-06-24 11:20:3058

基于深度學(xué)習(xí)的文本主題模型研究綜述

基于深度學(xué)習(xí)的文本主題模型研究綜述
2021-06-24 11:49:1868

結(jié)合基擴(kuò)展模型深度學(xué)習(xí)的信道估計(jì)方法

結(jié)合基擴(kuò)展模型深度學(xué)習(xí)的信道估計(jì)方法
2021-06-30 10:43:3962

深度學(xué)習(xí)嵌入式系統(tǒng)

具有深度學(xué)習(xí)模型的嵌入式系統(tǒng)應(yīng)用程序帶來了巨大的好處。深度學(xué)習(xí)嵌入式系統(tǒng)已經(jīng)改變了各個(gè)行業(yè)的企業(yè)和組織。深度學(xué)習(xí)模型可以幫助實(shí)現(xiàn)工業(yè)流程自動(dòng)化,進(jìn)行實(shí)時(shí)分析以做出決策,甚至可以預(yù)測(cè)預(yù)警。這些AI
2021-10-20 19:05:5842

移植深度學(xué)習(xí)算法模型到海思AI芯片

本文大致介紹將深度學(xué)習(xí)算法模型移植到海思AI芯片的總體流程和一些需要注意的細(xì)節(jié)。海思芯片移植深度學(xué)習(xí)算法模型,大致分為模型轉(zhuǎn)換,...
2022-01-26 19:42:3511

利用深度學(xué)習(xí)模型與計(jì)算機(jī)視覺構(gòu)建虛擬更衣室

  將深度學(xué)習(xí)模型與計(jì)算機(jī)視覺相結(jié)合,Revery.ai正在改善零售商和消費(fèi)者的在線更衣室體驗(yàn)。這項(xiàng)技術(shù)創(chuàng)建了一個(gè)工具,利用現(xiàn)有的商店目錄圖像來構(gòu)建一個(gè)可伸縮的虛擬更衣室,使購(gòu)物者能夠在不出門的情況下嘗試商店的全部庫(kù)存。
2022-04-08 09:36:00727

如何為深度學(xué)習(xí)模型設(shè)計(jì)審計(jì)方案

  在本文中,我們開發(fā)了一個(gè)深度學(xué)習(xí)( DL )模型審計(jì)框架。越來越多的人開始關(guān)注 DL 模型中的固有偏見,這些模型部署在廣泛的環(huán)境中,并且有多篇關(guān)于部署前審核 DL 模型的必要性的新聞文章。我們的框架將這個(gè)審計(jì)問題形式化,我們認(rèn)為這是在部署期間提高 DL 模型的安全性和道德使用的一個(gè)步驟
2022-04-19 14:50:241083

深度學(xué)習(xí)并非“簡(jiǎn)單的統(tǒng)計(jì)”

與此同時(shí),Boaz Barak 通過展示擬合統(tǒng)計(jì)模型學(xué)習(xí)數(shù)學(xué)這兩個(gè)不同的場(chǎng)景案例,探討其與深度學(xué)習(xí)的匹配性;他認(rèn)為,雖然深度學(xué)習(xí)的數(shù)學(xué)和代碼與擬合統(tǒng)計(jì)模型幾乎相同,但在更深層次上,深度學(xué)習(xí)中的極大部分都可在“向?qū)W生傳授技能”場(chǎng)景中被捕獲。
2022-08-09 10:01:10956

超詳細(xì)配置教程:用Windows電腦訓(xùn)練深度學(xué)習(xí)模型

雖然大多數(shù)深度學(xué)習(xí)模型都是在 Linux 系統(tǒng)上訓(xùn)練的,但 Windows 也是一個(gè)非常重要的系統(tǒng),也可能是很多機(jī)器學(xué)習(xí)初學(xué)者更為熟悉的系統(tǒng)。要在 Windows 上開發(fā)模型,首先當(dāng)然是配置開發(fā)環(huán)境
2022-11-08 10:57:441101

深度學(xué)習(xí)聚類的綜述

作者:凱魯嘎吉 來源:博客園 這篇文章對(duì)現(xiàn)有的深度聚類算法進(jìn)行全面綜述與總結(jié)?,F(xiàn)有的深度聚類算法大都由聚類損失與網(wǎng)絡(luò)損失兩部分構(gòu)成,博客從兩個(gè)視角總結(jié)現(xiàn)有的深度聚類算法,即聚類模型與神經(jīng)網(wǎng)絡(luò)模型
2022-12-30 11:15:08649

什么是深度學(xué)習(xí)中優(yōu)化算法

先大致講一下什么是深度學(xué)習(xí)中優(yōu)化算法吧,我們可以把模型比作函數(shù),一種很復(fù)雜的函數(shù):h(f(g(k(x)))),函數(shù)有參數(shù),這些參數(shù)是未知的,深度學(xué)習(xí)中的“學(xué)習(xí)”就是通過訓(xùn)練數(shù)據(jù)求解這些未知的參數(shù)。
2023-02-13 15:31:481019

模型為什么是深度學(xué)習(xí)的未來?

與傳統(tǒng)機(jī)器學(xué)習(xí)相比,深度學(xué)習(xí)是從數(shù)據(jù)中學(xué)習(xí),而大模型則是通過使用大量的模型來訓(xùn)練數(shù)據(jù)。深度學(xué)習(xí)可以處理任何類型的數(shù)據(jù),例如圖片、文本等等;但是這些數(shù)據(jù)很難用機(jī)器完成。大模型可以訓(xùn)練更多類別、多個(gè)級(jí)別的模型,因此可以處理更廣泛的類型。另外:在使用大模型時(shí),可能需要一個(gè)更全面或復(fù)雜的數(shù)學(xué)和數(shù)值計(jì)算的支持。
2023-02-16 11:32:371605

為什么深度學(xué)習(xí)是非參數(shù)的?

今天我想要與大家分享的是深度神經(jīng)網(wǎng)絡(luò)的工作方式,以及深度神經(jīng)與“傳統(tǒng)”機(jī)器學(xué)習(xí)模型的不同之處。
2023-05-25 15:13:54268

機(jī)器學(xué)習(xí)構(gòu)建ML模型實(shí)踐

實(shí)踐中的機(jī)器學(xué)習(xí)構(gòu)建 ML 模型
2023-07-05 16:30:36412

什么是深度學(xué)習(xí)算法?深度學(xué)習(xí)算法的應(yīng)用

什么是深度學(xué)習(xí)算法?深度學(xué)習(xí)算法的應(yīng)用 深度學(xué)習(xí)算法被認(rèn)為是人工智能的核心,它是一種模仿人類大腦神經(jīng)元的計(jì)算模型。深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一種變體,主要通過變換各種架構(gòu)來對(duì)大量數(shù)據(jù)進(jìn)行學(xué)習(xí)以及分類處理
2023-08-17 16:03:041305

深度學(xué)習(xí)框架是什么?深度學(xué)習(xí)框架有哪些?

深度學(xué)習(xí)框架是什么?深度學(xué)習(xí)框架有哪些?? 深度學(xué)習(xí)框架是一種軟件工具,它可以幫助開發(fā)者輕松快速地構(gòu)建和訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型。與手動(dòng)編寫代碼相比,深度學(xué)習(xí)框架可以大大減少開發(fā)和調(diào)試的時(shí)間和精力,并提
2023-08-17 16:03:091589

深度學(xué)習(xí)框架的作用是什么

的任務(wù),需要使用深度學(xué)習(xí)框架。 深度學(xué)習(xí)框架是對(duì)深度學(xué)習(xí)算法和神經(jīng)網(wǎng)絡(luò)模型進(jìn)行構(gòu)建、調(diào)整和優(yōu)化的軟件工具集。這些框架不僅能夠提高深度學(xué)習(xí)的效率,還能使開發(fā)者更好地理解和操作深度學(xué)習(xí)。 以下是深度學(xué)習(xí)框架的作用:
2023-08-17 16:10:571072

深度學(xué)習(xí)框架tensorflow介紹

。TensorFlow可以用于各種不同的任務(wù),包括圖像和語(yǔ)音識(shí)別、自然語(yǔ)言處理和推薦系統(tǒng)等。 TensorFlow提供了一個(gè)靈活和強(qiáng)大的平臺(tái),可以用于構(gòu)建和訓(xùn)練各種深度學(xué)習(xí)模型。TensorFlow的核心
2023-08-17 16:11:021283

深度學(xué)習(xí)框架連接技術(shù)

深度學(xué)習(xí)框架連接技術(shù) 深度學(xué)習(xí)框架是一個(gè)能夠幫助機(jī)器學(xué)習(xí)和人工智能開發(fā)人員輕松進(jìn)行模型訓(xùn)練、優(yōu)化及評(píng)估的軟件庫(kù)。深度學(xué)習(xí)框架連接技術(shù)則是需要使用深度學(xué)習(xí)模型的應(yīng)用程序必不可少的技術(shù),通過連接技術(shù)
2023-08-17 16:11:16443

深度學(xué)習(xí)框架和深度學(xué)習(xí)算法教程

了基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)方法。 深度學(xué)習(xí)算法可以分為兩大類:監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)。監(jiān)督學(xué)習(xí)的基本任務(wù)是訓(xùn)練模型學(xué)習(xí)輸入數(shù)據(jù)的特征和其對(duì)應(yīng)的標(biāo)簽,然后用于新數(shù)據(jù)的預(yù)測(cè)。而無監(jiān)督學(xué)習(xí)通常用于聚類、降維和生成模型等任務(wù)中
2023-08-17 16:11:26638

深度學(xué)習(xí)服務(wù)器怎么做 深度學(xué)習(xí)服務(wù)器diy 深度學(xué)習(xí)服務(wù)器主板用什么

。因此,深度學(xué)習(xí)服務(wù)器逐漸成為了人們進(jìn)行深度學(xué)習(xí)實(shí)驗(yàn)的必要工具。本文將介紹深度學(xué)習(xí)服務(wù)器的DIY,并討論如何選擇主板。 一、深度學(xué)習(xí)服務(wù)器的DIY 1.選擇適合的處理器 深度學(xué)習(xí)對(duì)處理器的要求非常高,因?yàn)橛?xùn)練一個(gè)深度學(xué)習(xí)模型需要進(jìn)行
2023-08-17 16:11:29489

卷積神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練步驟

卷積神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練步驟? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種常用的深度學(xué)習(xí)算法,廣泛應(yīng)用于圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等諸多領(lǐng)域。CNN
2023-08-21 16:42:00885

深度學(xué)習(xí)的定義和特點(diǎn) 深度學(xué)習(xí)典型模型介紹

深度學(xué)習(xí)(Deep Learning)是一種基于人工神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是模型由多個(gè)隱層組成,可以自動(dòng)地學(xué)習(xí)特征,并進(jìn)行預(yù)測(cè)或分類。該算法在計(jì)算機(jī)視覺、語(yǔ)音識(shí)別、自然語(yǔ)言處理、推薦系統(tǒng)和數(shù)據(jù)挖掘等領(lǐng)域被廣泛應(yīng)用,成為機(jī)器學(xué)習(xí)領(lǐng)域的一種重要分支。
2023-08-21 18:22:53929

機(jī)器學(xué)習(xí)深度學(xué)習(xí)的區(qū)別

  機(jī)器學(xué)習(xí)深度學(xué)習(xí)是當(dāng)今最流行的人工智能(AI)技術(shù)之一。這兩種技術(shù)都有助于在不需要人類干預(yù)的情況下讓計(jì)算機(jī)自主學(xué)習(xí)和改進(jìn)預(yù)測(cè)模型。本文將探討機(jī)器學(xué)習(xí)深度學(xué)習(xí)的概念以及二者之間的區(qū)別。
2023-08-28 17:31:09891

深度學(xué)習(xí)的由來 深度學(xué)習(xí)的經(jīng)典算法有哪些

深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)的一個(gè)分支,其學(xué)習(xí)方法可以分為監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)。兩種方法都具有其獨(dú)特的學(xué)習(xí)模型:多層感知機(jī) 、卷積神經(jīng)網(wǎng)絡(luò)等屬于監(jiān) 督學(xué)習(xí);深度置信網(wǎng) 、自動(dòng)編碼器 、去噪自動(dòng)編碼器 、稀疏編碼等屬于無監(jiān)督學(xué)習(xí)。
2023-10-09 10:23:42303

模型數(shù)據(jù)集:構(gòu)建、挑戰(zhàn)與未來趨勢(shì)

隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,大型預(yù)訓(xùn)練模型如GPT-4、BERT等在各個(gè)領(lǐng)域取得了顯著的成功。這些大模型背后的關(guān)鍵之一是龐大的數(shù)據(jù)集,為模型提供了豐富的知識(shí)和信息。本文將探討大模型數(shù)據(jù)集的構(gòu)建、面臨的挑戰(zhàn)以及未來發(fā)展趨勢(shì)。
2023-12-06 15:28:52507

深度學(xué)習(xí)如何訓(xùn)練出好的模型

算法工程、數(shù)據(jù)派THU深度學(xué)習(xí)在近年來得到了廣泛的應(yīng)用,從圖像識(shí)別、語(yǔ)音識(shí)別到自然語(yǔ)言處理等領(lǐng)域都有了卓越的表現(xiàn)。但是,要訓(xùn)練出一個(gè)高效準(zhǔn)確的深度學(xué)習(xí)模型并不容易。不僅需要有高質(zhì)量的數(shù)據(jù)、合適的模型
2023-12-07 12:38:24547

如何基于深度學(xué)習(xí)模型訓(xùn)練實(shí)現(xiàn)圓檢測(cè)與圓心位置預(yù)測(cè)

Hello大家好,今天給大家分享一下如何基于深度學(xué)習(xí)模型訓(xùn)練實(shí)現(xiàn)圓檢測(cè)與圓心位置預(yù)測(cè),主要是通過對(duì)YOLOv8姿態(tài)評(píng)估模型在自定義的數(shù)據(jù)集上訓(xùn)練,生成一個(gè)自定義的圓檢測(cè)與圓心定位預(yù)測(cè)模型
2023-12-21 10:50:05529

如何基于深度學(xué)習(xí)模型訓(xùn)練實(shí)現(xiàn)工件切割點(diǎn)位置預(yù)測(cè)

Hello大家好,今天給大家分享一下如何基于深度學(xué)習(xí)模型訓(xùn)練實(shí)現(xiàn)工件切割點(diǎn)位置預(yù)測(cè),主要是通過對(duì)YOLOv8姿態(tài)評(píng)估模型在自定義的數(shù)據(jù)集上訓(xùn)練,生成一個(gè)工件切割分離點(diǎn)預(yù)測(cè)模型
2023-12-22 11:07:46259

已全部加載完成