二、機器人基本組成
機器人目前是典型的機電一體化產(chǎn)品,一般由機械本體、控制系統(tǒng)、傳感器和驅(qū)動器等四部分組成。為對本體進行精確控制,傳感器應提供機器人本體或其所處環(huán)境的信息,控制系統(tǒng)依據(jù)控制程序產(chǎn)生指令信號,通過控制各關節(jié)運動坐標的驅(qū)動器,使各臂桿端點按照要求的軌跡、速度和加速度,以一定的姿態(tài)達到空間指定的位置。驅(qū)動器將控制系統(tǒng)輸出的信號變換成大功率的信號,以驅(qū)動執(zhí)行器工作。
1.機械本體
機械本體,是機器人賴以完成作業(yè)任務的執(zhí)行機構,一般是一臺機械手,也稱操作器、或操作手,可以在確定的環(huán)境中執(zhí)行控制系統(tǒng)指定的操作。典型工業(yè)機器人的機械本體一般由手部(末端執(zhí)行器)、腕部、臂部、腰部和基座構成。機械手多采用關節(jié)式機械結構,一般具有6個自由度,其中3個用來確定末端執(zhí)行器的位置,另外3個則用來確定末端執(zhí)行裝置的方向(姿勢)。機械臂上的末端執(zhí)行裝置可以根據(jù)操作需要換成焊槍、吸盤、扳手等作業(yè)工具。
2.控制系統(tǒng)
控制系統(tǒng)是機器人的指揮中樞,相當于人的大腦功能,負責對作業(yè)指令信息、內(nèi)外環(huán)境信息進行處理,并依據(jù)預定的本體模型、環(huán)境模型和控制程序做出決策,產(chǎn)生相應的控制信號,通過驅(qū)動器驅(qū)動執(zhí)行機構的各個關節(jié)按所需的順序、沿確定的位置或軌跡運動,完成特定的作業(yè)。從控制系統(tǒng)的構成看,有開環(huán)控制系統(tǒng)和閉環(huán)控制系統(tǒng)之分;從控制方式看有程序控制系統(tǒng)、適應性控制系統(tǒng)和智能控制系統(tǒng)之分。
3.驅(qū)動器
驅(qū)動器是機器人的動力系統(tǒng),相當于人的心血管系統(tǒng),一般由驅(qū)動裝置和傳動機構兩部分組成。因驅(qū)動方式的不同,驅(qū)動裝置可以分成電動、液動和氣動三種類型。驅(qū)動裝置中的電動機、液壓缸、氣缸可以與操作機直接相連,也可以通過傳動機構與執(zhí)行機構相連。傳動機構通常有齒輪傳動、鏈傳動、諧波齒輪傳動、螺旋傳動、帶傳動等幾種類型。
4.傳感器
傳感器是機器人的感測系統(tǒng),相當于人的感覺器官,是機器人系統(tǒng)的重要組成部分,包括內(nèi)部傳感器和外部傳感器兩大類。內(nèi)部傳感器主要用來檢測機器人本身的狀態(tài),為機器人的運動控制提供必要的本體狀態(tài)信息,如位置傳感器、速度傳感器等。外部傳感器則用來感知機器人所處的工作環(huán)境或工作狀況信息,又可分成環(huán)境傳感器和末端執(zhí)行器傳感器兩種類型。
前者用于識別物體和檢測物體與機器人的距離等信息,后者安裝在末端執(zhí)行器上,檢測處理精巧作業(yè)的感覺信息。常見的外部傳感器有力覺傳感器、觸覺傳感器、接近覺傳感器、視覺傳感器等。
機器人一般結構
三、機器人分類
我國的機器人專家從應用環(huán)境出發(fā),將機器人分為兩大類,即工業(yè)機器人和特種機器人。
所謂工業(yè)機器人就是面向工業(yè)領域的多關節(jié)機械手或多自由度機器人。而特種機器人則是除工業(yè)機器人之外的、用于非制造業(yè)并服務于人類的各種先進機器人,包括:服務機器人、水下機器人、娛樂機器人、軍用機器人、農(nóng)業(yè)機器人、機器人化機器等。
在特種機器人中,有些分支發(fā)展很快,有獨立成體系的趨勢,如服務機器人、水下機器人、軍用機器人、微操作機器人等。
國際機器人聯(lián)合會將機器人分為兩類,工業(yè)機器人和服務機器人。工業(yè)機器人是“一種應用于工業(yè)自動化的,含有三個及以上的可編程軸的、自動控制的、可編程的、多功能執(zhí)行機構,它可以是固定式的或移動式的”。服務機器人則是“一種半自主或全自主工作的機器人,它能完成有益于人類健康的服務工作,但不包括從事生產(chǎn)的設備”。 這和我國的分類基本是一致的。
也有的按負載重量分,有的按控制方式分,有的按自由度分,有的按結構分,有的按應用領域分。一般的分類方式:
示教再現(xiàn)型機器人:通過引導或其它方式,先教會機器人動作,輸入工作程序,機器人則自動重復進行作業(yè)。
數(shù)控型機器人:不必使機器人動作,通過數(shù)值、語言等對機器人進行示教,機器人根據(jù)示教后的信息進行作業(yè)。
感覺控制型機器人:利用傳感器獲取的信息控制機器人的動作。
適應控制型機器人:機器人能適應環(huán)境的變化,控制其自身的行動。
學習控制型機器人:機器人能“體會”工作的經(jīng)驗,具有一定的學習功能,并將所“學”的經(jīng)驗用于工作中。
智能機器人:以人工智能決定其行動的機器人。
三、機器人的優(yōu)缺點
機器人使用的優(yōu)點
機器人和自動化技術在多數(shù)情況下可以提高生產(chǎn)率,安全性,效率,產(chǎn)品質(zhì)量和產(chǎn)品的一性;
機器人可以在危險的環(huán)境下工作,而無需考慮生命保障或安全的需要;
機器人無需舒適的環(huán)境,例如考慮照明,空調(diào),通風以及噪音隔離等。
機器人能不知疲倦,不知厭煩地持續(xù)工作,他們不會有心理問題,做事不拖沓,不需要醫(yī)療保險或假期;
機器人除了發(fā)生故障或磨損外,將始終如一地保持精確度;
機器人具有比人高得多的精確度。直線位移精度可達千分之幾英寸(1英寸= 2.54cm),新型的半導體晶片處理機器人具有微英寸級的精度;
機器人和其附屬設備及傳感器具有某些人類所不具備的能力;
機器人可以同時響應多個激勵或處理多項任務,而人類只能響應一個現(xiàn)行激勵。
機器人使用的負面
機器人替代了工人,由此帶來經(jīng)濟和社會問題;
機器人缺乏應急能能力,除非該緊急情況能夠預知并已在系統(tǒng)中設置了應對方案,否則不能很好地處理緊急情況。同時,還需要有安全措施來確保機器人不會傷害操作人員以及與他一起工作的機器(設備)。這些情況包括:不恰當或錯誤的反應、缺乏決策的能力、斷電、機器人或其它設備的損傷、人員傷害;
機器人盡管在一定情況下非常出眾,但其能力在以下方面仍具有局限性(與人相比),表現(xiàn)在:自由度、靈巧度、傳感器能力視覺系統(tǒng)、實時響應。
四、機器人的性能指標
以下幾項用來定義機器人的性能指標:
負荷能力:負荷能力是機器人在滿足其它性能要求的情況下,能夠承擔的負荷重量。例如,一臺機器人的最大負荷能力可能遠大于它的額定負荷能力,但是達到最大負荷時,機器人的工作精度可能會降低,可能無法準確地沿著預定的軌跡運動,或者產(chǎn)生額外的偏差。機器人的負荷量與其自身的重量相比往往非常小。例如,F(xiàn)anuc Robotics LR Mate機器人自身重86磅,而其負荷量僅為6.6磅;M16機器人自身重594磅,而其負荷量僅為35磅。
運動范圍:運動范圍是機器人在其工作區(qū)域內(nèi)可以達到的最大距離。機器人可按任意的姿態(tài)達到其工作區(qū)域內(nèi)的許多點(這些點稱為靈巧點)。然而,對于其他一些接近于機器人運動范圍的極限線,則不能任意指定其姿態(tài)(這些點稱為非靈巧點)。說明:運動范圍是機器人關節(jié)長度和其構型的函數(shù)。
精度:精度是指機器人到達指定點的精確程度 說明:它與驅(qū)動器的分辨率以及反饋裝置有關。大多數(shù)工業(yè)機器人具有0.001英寸或更高的精度。
重復精度:重復精度是指如果動作重復多次,機器人到達同樣位置的精確程度。舉例:假設驅(qū)動機器人到達同一點100次,由于許多因素會影響機器人的位置精度,機器人不可能每次都能準確地到達同一點,但應在以該點為圓心的一個圓區(qū)范圍內(nèi)。該圓的半徑是由一系列重復動作形成的,這個半徑即為重復精度。說明:重復精度比精度更為重要,如果一個機器人定位不夠精確,通常會顯示一固定的誤差,這個誤差是可以預測的,因此可以通過編程予以校正。
舉例:假設一個機器人總是向右偏離0.01mm,那么可以規(guī)定所有的位置點都向左偏移0.01mm英寸,這樣就消除了偏差。說明:如果誤差是隨機的,那它就無法預測,因此也就無法消除。重負精度限定了這種隨機誤差的范圍,通常通過一定次數(shù)地重復運行機器人來測定。
評論
查看更多