電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀(guān)看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>模擬技術(shù)>轉(zhuǎn)換器>MAX77503效率降壓轉(zhuǎn)換器解決方案

MAX77503效率降壓轉(zhuǎn)換器解決方案

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀(guān)點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

降壓轉(zhuǎn)換器實(shí)現(xiàn)高效的能量收集的解決方案

在連續(xù)導(dǎo)通模式(CCM)中,電感電流永遠(yuǎn)不會(huì)降至零,而在非連續(xù)導(dǎo)通模式(DCM)中,電感電流可能降至零。使用FET的降壓轉(zhuǎn)換器(如圖1所示)稱(chēng)為同步降壓轉(zhuǎn)換器;非同步降壓轉(zhuǎn)換器使用肖特基二極管作為開(kāi)關(guān)B.由于FET具有比肖特基二極管更低的壓降,因此同步降壓轉(zhuǎn)換器通常更有效。
2019-03-12 08:34:003521

1.6A PWM降壓DC/DC轉(zhuǎn)換器TD1609

溫保護(hù)在故障條件下提供全面保護(hù)。 防環(huán)功能SOP-8封裝是為了減少EMI的影響。應(yīng)用該器件采用SOP-8封裝,提供非常好的產(chǎn)品簡(jiǎn)單的高效降壓調(diào)節(jié)緊湊的系統(tǒng)解決方案,最大限度地依賴(lài)外部線(xiàn)性穩(wěn)壓的高效預(yù)調(diào)節(jié)組件??ㄉ祥_(kāi)關(guān)穩(wěn)壓正負(fù)轉(zhuǎn)換器[td=405]電池充電器
2018-12-28 11:45:41

174W 同步降壓轉(zhuǎn)換器,可實(shí)現(xiàn) 98% 的效率

`描述此參考設(shè)計(jì)使用 TPS40170 同步降壓模式控制,以便將 35V - 45V 輸入步降至 29V/6A。此轉(zhuǎn)換器實(shí)現(xiàn)了全負(fù)荷時(shí) 98% 以上的效率。`
2015-04-22 16:24:30

3.3V 5A兩級(jí)降壓轉(zhuǎn)換器解決方案包括BOM和測(cè)試報(bào)告

解決方案的 750kHz 開(kāi)關(guān)頻率采用電流模式控制進(jìn)行輕松補(bǔ)償此兩級(jí)降壓轉(zhuǎn)換器解決方案已組建完成并經(jīng)過(guò)全面測(cè)試。提供原理圖、BOM 和測(cè)試報(bào)告
2018-11-13 16:54:13

60V降壓型DC/DC轉(zhuǎn)換器保持高效率

DN269-60V降壓型DC / DC轉(zhuǎn)換器保持高效率
2019-06-25 11:54:23

MAX1674MAX1675高效率DCDC升壓轉(zhuǎn)換器相關(guān)資料下載

MAX1674和MAX1675升壓型DC-DC轉(zhuǎn)換器,具有高達(dá)94%的轉(zhuǎn)換效率,靜態(tài)電流僅16uA。其內(nèi)部含有同步整流,一方面提高了變換效率,另一方面省卻了外接肖特基二極管,使得其外圍元件非常簡(jiǎn)潔。
2021-04-28 07:53:28

MAX1642和MAX1627組成的高效率DCDC轉(zhuǎn)換器相關(guān)資料分享

由于MOSFET具有很低的導(dǎo)通電阻,因而在DC-DC轉(zhuǎn)換器中有著廣泛的應(yīng)用,但是,過(guò)低的驅(qū)動(dòng)電壓會(huì)使MOSFET不能夠工作于“完全導(dǎo)通”狀態(tài),從而大大降低了該轉(zhuǎn)換器效率。這也就是說(shuō),對(duì)于低電壓降壓的應(yīng)用(例如把+1.8V降壓為+1.5V),直接驅(qū)動(dòng)MOSFET是得不到高轉(zhuǎn)換效率的。
2021-04-27 06:00:58

降壓-升壓轉(zhuǎn)換器能否成為電壓轉(zhuǎn)換的理想解決方案

不適合所需的輸入電壓,或者電壓變化超出所需的容差范圍,則由固定電源軌供電的應(yīng)用(如光學(xué)模塊、有線(xiàn)傳感、有源電纜或加密狗)也可能需要電壓轉(zhuǎn)換。 本文探討了降壓-升壓轉(zhuǎn)換器能否成為電壓轉(zhuǎn)換的理想解決方案以及是否可以成為用于任何類(lèi)型DC/DC電壓轉(zhuǎn)換的通用工具。
2020-11-03 06:44:51

降壓-升壓轉(zhuǎn)換器讓能量搜集更靈活

,以確保適當(dāng)?shù)碾妷狠敵鲭娖?。單芯片?b class="flag-6" style="color: red">降壓-升壓轉(zhuǎn)換器提供了一個(gè)方便的選擇,產(chǎn)生一個(gè)輸出電壓,可以小于,等于或大于輸入電壓。降壓/升壓轉(zhuǎn)換器包含四個(gè)開(kāi)關(guān),電容器和電感(圖1A)。在操作中,高效率降壓
2016-03-10 17:16:15

降壓轉(zhuǎn)換器不能正常工作

嗨,伙計(jì)們,我正在設(shè)計(jì)一個(gè)簡(jiǎn)單的降壓轉(zhuǎn)換器。VIN=12VVOUT=5VI必須使用降壓轉(zhuǎn)換器。我通過(guò)搜索因特網(wǎng)設(shè)計(jì)了一些電路,但是它不能正常工作。不知道我哪里錯(cuò)了。你們能建議些什么嗎?
2019-09-24 07:24:22

降壓轉(zhuǎn)換器控制方案 - 為什么不僅僅是比較還不夠?

在理解標(biāo)準(zhǔn)PWM控制方案之前,我應(yīng)該為轉(zhuǎn)換器提出一些控制方案。如果將轉(zhuǎn)換器的輸出與固定參考電壓進(jìn)行比較以將輸出驅(qū)動(dòng)到所需的電壓水平,這還不夠嗎?雖然我不確定它還有更多,但這似乎工作得很好。我試過(guò)用一
2018-07-20 12:16:16

降壓轉(zhuǎn)換器的導(dǎo)出示例

這是新篇章“各轉(zhuǎn)換器的傳遞函數(shù)”的第二章。下面將具體進(jìn)行傳遞函數(shù)的導(dǎo)出。此次以降壓轉(zhuǎn)換器的導(dǎo)出為例。參照前面章節(jié)一并閱讀會(huì)更容易理解。降壓轉(zhuǎn)換器的傳遞函數(shù)導(dǎo)出示例如前所述,導(dǎo)出的傳遞函數(shù)為 和。導(dǎo)出
2018-11-30 11:46:57

降壓轉(zhuǎn)換器設(shè)計(jì)過(guò)程的擊穿現(xiàn)象是什么意思

負(fù)載點(diǎn)電源供應(yīng)系統(tǒng) (POL) 或使用點(diǎn)電源供應(yīng)系統(tǒng) (PUPS) 等供電系統(tǒng)都廣泛采用同步降壓轉(zhuǎn)換器。這種同步降壓轉(zhuǎn)換器采用高端及低端的 MOSFET 取代傳統(tǒng)降壓轉(zhuǎn)換器的箝位二極管,以便降低負(fù)載
2022-01-03 07:30:24

降壓型DCDC轉(zhuǎn)換器MAX5033電子資料

概述:MAX5033為易于使用、高效率、高壓、降壓型DC-DC轉(zhuǎn)換器,工作于高達(dá)76V的輸入電壓,空載時(shí)僅消耗270μA的靜態(tài)電流。脈寬調(diào)制(PWM)轉(zhuǎn)換器重載時(shí)工作在固定的125kHz開(kāi)關(guān)頻率,輕載時(shí)可...
2021-04-20 07:01:13

ADP2108-1.5-EVALZ評(píng)估板是一款完整的600 mA,降壓穩(wěn)壓解決方案

ADP2108-1.5-EVALZ評(píng)估板是一款完整的600 mA,降壓穩(wěn)壓解決方案,可測(cè)試ADP2108,這是一種高效率,低靜態(tài)電流降壓型DC-DC轉(zhuǎn)換器,采用WLCSP和TSOT封裝
2019-07-23 08:40:51

ADP2108UJZ-REDYKIT是一款完整的600 mA,降壓穩(wěn)壓解決方案

ADP2108UJZ-REDYKIT,評(píng)估板是一款完整的600 mA,降壓穩(wěn)壓解決方案,用于測(cè)試ADP2108,這是一種高效率,低靜態(tài)電流降壓型DC-DC轉(zhuǎn)換器,采用WLCSP和TSOT封裝
2019-07-22 08:48:11

DC-DC降壓轉(zhuǎn)換器的電壓模式控制

我之前的問(wèn)題是關(guān)于遲滯式降壓轉(zhuǎn)換器降壓轉(zhuǎn)換器控制方案 - 為什么不僅僅是比較還不夠?根據(jù)我之前的答案收集的結(jié)果,遲滯式降壓轉(zhuǎn)換器不能有效工作,因?yàn)殚_(kāi)關(guān)頻率不恒定,導(dǎo)致輸出紋波。以下是標(biāo)準(zhǔn)電壓控制
2018-07-20 12:37:04

PCB空間限制?中間總線(xiàn)轉(zhuǎn)換器如何提供幫助!

?Enpirion?PowerSoC),也可以是分立的降壓轉(zhuǎn)換器。使用IBA為POL轉(zhuǎn)換器供電通??梢越档统杀竞涂s小解決方案尺寸,同時(shí)保持具有競(jìng)爭(zhēng)力的系統(tǒng)效率。與DPA相比,使用IBA的優(yōu)勢(shì)取決于轉(zhuǎn)換的電源軌數(shù),更多的電源軌可節(jié)省更多空間和成本。取決于所使用的POL轉(zhuǎn)換器,系統(tǒng)效率可以保持競(jìng)爭(zhēng)力。
2020-09-04 19:18:33

TPS6224x降壓轉(zhuǎn)換器的相關(guān)資料分享

采用 2x2mm SON/TSOT23 封裝的 2.25MHz 300mA 降壓轉(zhuǎn)換器概觀(guān)TPS6224x降壓轉(zhuǎn)換器采用典型的2.25 MHz固定頻率脈沖寬度調(diào)制(PWM)在中等到重負(fù)載電流下。在輕
2021-11-17 07:27:42

TPS63070降壓升壓轉(zhuǎn)換器描述

描述TPS63070是一款具有低靜態(tài)電流的高效降壓 - 升壓轉(zhuǎn)換器,適用于那些輸入電壓可能高于或低于輸出電壓的應(yīng)用。在升壓或降壓模式下,輸出電流可高達(dá)2A。此降壓 - 升壓轉(zhuǎn)換器基于一個(gè)固定頻率
2022-01-03 06:13:50

TPS7H4010-SEP降壓轉(zhuǎn)換器

`TPS7H4010-SEP是一款易于使用的同步降壓型DC / DC轉(zhuǎn)換器,能夠從3.5V至32V的電源電壓驅(qū)動(dòng)高達(dá)6A的負(fù)載電流。TPS7H4010-SEP提供出色的效率和輸出解決方案尺寸很小
2021-03-24 16:37:25

USB Type-C 100W同步4開(kāi)關(guān)降壓/升壓轉(zhuǎn)換器

描述 PMP20042 是一款采用 LM5175 控制的同步 4 開(kāi)關(guān)降壓/升壓轉(zhuǎn)換器,適合 USB Type C 應(yīng)用。利用跳線(xiàn)或漏極控制開(kāi)關(guān)可選擇 5V、9V、15V 或 20V/5A 的輸出
2018-11-26 15:19:26

[原創(chuàng)]TI針對(duì)能量采集和低功耗應(yīng)用推出高效率電源轉(zhuǎn)換器_TPS62120

TI針對(duì)能量采集和低功耗應(yīng)用推出高效率電源轉(zhuǎn)換器_TPS6212075 mA DC/DC 降壓轉(zhuǎn)換器可支援 2 V 至 15 V 輸入電壓 靜態(tài)電流僅為 11 uA TI宣布針對(duì)能量采集和低功耗相關(guān)
2010-10-12 21:03:17

[求助]視頻轉(zhuǎn)換器解決方案

本帖最后由 gk320830 于 2015-3-9 21:35 編輯 本人求助一個(gè)視頻轉(zhuǎn)換器解決方案,有現(xiàn)成的最好。有的請(qǐng)與我聯(lián)系,謝謝/
2009-11-30 02:45:06

為PoE PD提供強(qiáng)制4對(duì)UPOE解決方案的高效反激轉(zhuǎn)換器

描述TIDA-00539 使用兩個(gè) TPS2378 PD 控制,為 51W 非標(biāo)準(zhǔn) PoE PD 應(yīng)用提供強(qiáng)制 4 對(duì) UPOE 解決方案。整合了 UCC2897A 控制,實(shí)現(xiàn)了效率高、瞬變響應(yīng)
2018-11-14 09:53:46

交流/直流降壓轉(zhuǎn)換器參考設(shè)計(jì)

描述PMP10783 參考設(shè)計(jì)是一種交流/直流降壓轉(zhuǎn)換器。其輸入電壓范圍為 85VAC-318VAC,輸出為 15V (0.80A)。此緊湊型電路板設(shè)計(jì)的滿(mǎn)載效率大于 80%。特性交流/直流降壓
2022-09-20 07:55:11

今日推薦-YB2414高效率同步降壓轉(zhuǎn)換器

YB2414高效率同步降壓轉(zhuǎn)換器 概述: YB2414是一款高效率500 kHz同步降壓DC-DC轉(zhuǎn)換器,能夠提供4A/5A電流。 YB2414可在4.5V至18V的寬輸入電壓范圍內(nèi)工作,并集成
2024-01-13 12:14:59

從48V轉(zhuǎn)換到3.3V,看電源轉(zhuǎn)換器效率

,非常常見(jiàn)且更高效的提高功率效率的電路解決方案是產(chǎn)生一個(gè)中間電壓。圖2顯示了一個(gè)使用兩個(gè)高效率降壓調(diào)節(jié)的級(jí)聯(lián)設(shè)置。第一步是將48 V電壓轉(zhuǎn)換為12 V,然后在第二轉(zhuǎn)換步驟中將該電壓轉(zhuǎn)換為3.3 V
2018-12-03 10:44:45

傳統(tǒng)的電信板電源系統(tǒng)架構(gòu)帶有隔離式總線(xiàn)轉(zhuǎn)換器

降低轉(zhuǎn)換器效率,并會(huì)導(dǎo)致不可接受的熱應(yīng)力。與基于電感的傳統(tǒng)降壓轉(zhuǎn)換器相比,開(kāi)關(guān)式電容轉(zhuǎn)換器 (電荷泵) 可顯著提高效率并縮小解決方案尺寸。在電荷泵中,采用飛跨電容代替電感以存儲(chǔ)能量并將其從輸入端傳遞到
2020-10-27 07:58:39

使用TPS5430的可調(diào)降壓轉(zhuǎn)換器電路

。有時(shí)降壓轉(zhuǎn)換器也稱(chēng)為降壓轉(zhuǎn)換器,升壓轉(zhuǎn)換器也稱(chēng)為升壓轉(zhuǎn)換器。我介紹了一種可調(diào)降壓轉(zhuǎn)換器電路,它使用了德州儀器公司制造的高級(jí)轉(zhuǎn)換器芯片,即 TPS5430。它是一種高頻且效率高達(dá) 95% 的芯片。在此
2022-09-02 06:28:25

使用多相降壓轉(zhuǎn)換器和單相轉(zhuǎn)換器的好處

引言對(duì)于電流在 25 A 左右的低壓轉(zhuǎn)換器應(yīng)用而言,單相降壓控制非常有效。若電流再大的話(huà),功耗和效率就開(kāi)始出現(xiàn)問(wèn)題。一種較好的方法是使用多相降壓控制。本文將簡(jiǎn)單比較,使用多相降壓轉(zhuǎn)換器和單相
2022-11-23 06:04:49

使用多相降壓轉(zhuǎn)換器的優(yōu)勢(shì)

  引言  對(duì)于電流在25 A左右的低壓轉(zhuǎn)換器應(yīng)用而言,單相降壓控制非常有效。若電流再大的話(huà),功耗和效率就開(kāi)始出現(xiàn)問(wèn)題。一種較好的方法是使用多相降壓控制。本文將簡(jiǎn)單比較,使用多相降壓轉(zhuǎn)換器和單相
2018-11-26 16:52:21

使用多相位降壓轉(zhuǎn)換器有什么好處

作者:David Baba,德州儀器 引言對(duì)于電流在 25 A 左右的低壓轉(zhuǎn)換器應(yīng)用而言,單相降壓控制非常有效。若電流再大的話(huà),功耗和效率就開(kāi)始出現(xiàn)問(wèn)題。一種較好的方法是使用多相降壓控制。本文將
2018-09-19 11:43:05

借助LDO提高降壓轉(zhuǎn)換器的輕負(fù)載效率

降壓轉(zhuǎn)換器并聯(lián)的低壓降穩(wěn)壓 (LDO) ,在系統(tǒng)進(jìn)入輕負(fù)載/無(wú)負(fù)載狀態(tài)時(shí)從電池汲取最少的電流。最終,在系統(tǒng)中延長(zhǎng)電池使用壽命的理想情況將是禁止任何可能的器件使用輸入電源。然而在某些情況下,對(duì)于系統(tǒng)中
2022-11-21 06:14:09

具有輸入過(guò)壓保護(hù)的降壓轉(zhuǎn)換器小型解決方案

集成的降壓轉(zhuǎn)換器電路,它實(shí)現(xiàn)了小型的總體解決方案,同時(shí)還能處理高達(dá) 3 A 的輸出電流。主要特色? 針對(duì)短暫的過(guò)壓事件提供可靠的輸入過(guò)壓保護(hù)? 可擴(kuò)展的過(guò)壓保護(hù)電壓范圍? 小型解決方案 ? 輸出功率可超出 10W? 設(shè)計(jì)簡(jiǎn)單,BOM 小巧? 汽車(chē)組件通過(guò)認(rèn)證
2018-12-04 11:30:04

具有輸入過(guò)壓保護(hù)的完全集成降壓轉(zhuǎn)換器參考設(shè)計(jì)

集成的降壓轉(zhuǎn)換器電路,它實(shí)現(xiàn)了小型的總體解決方案,同時(shí)還能處理高達(dá) 3 A 的輸出電流。特性 ? 針對(duì)短暫的過(guò)壓事件提供可靠的輸入過(guò)壓保護(hù)? 可擴(kuò)展的過(guò)壓保護(hù)電壓范圍? 小型解決方案 ? 輸出功率可超出 10W? 設(shè)計(jì)簡(jiǎn)單,BOM 小巧? 汽車(chē)組件通過(guò)認(rèn)證
2022-09-21 06:33:30

具有集成MOSFET的汽車(chē)非同步降壓轉(zhuǎn)換器設(shè)計(jì)

描述 PMP10233 參考設(shè)計(jì)是適用于汽車(chē)應(yīng)用的非同步降壓轉(zhuǎn)換器,輸入電壓范圍是 9 至 42 V。它使用 TPS54140-Q1 提供 8.0 V、1.0 A 的輸出。主要特色寬輸入電壓范圍最高
2018-12-19 14:51:29

利用中間電壓提高功率轉(zhuǎn)換效率

Frederik Dostal問(wèn):如何提高高電壓輸入、低電壓輸出的電源轉(zhuǎn)換器效率?答:對(duì)于需要從高輸入電壓轉(zhuǎn)換到極低輸出電壓的應(yīng)用,有不同的解決方案。一個(gè)有趣的例子是從48 V轉(zhuǎn)換到3.3 V
2018-10-30 11:44:08

利用中間電壓提高功率轉(zhuǎn)換效率

問(wèn)題:如何提高高電壓輸入、低電壓輸出的電源轉(zhuǎn)換器效率?答案:對(duì)于需要從高輸入電壓轉(zhuǎn)換到極低輸出電壓的應(yīng)用,有不同的解決方案。一個(gè)有趣的例子是從48 V轉(zhuǎn)換到3.3 V。這樣的規(guī)格不僅在信息技術(shù)
2018-10-30 11:52:49

反向降壓-升壓轉(zhuǎn)換器的布局

在此前的博文中,我討論了VIN范圍、VOUT范圍和可用輸出電流IOUT最大值的區(qū)別。布局的差異源自反向降壓-升壓轉(zhuǎn)換器降壓變換的切換電流流動(dòng)路徑的差異——雖然至關(guān)重要——不容易理解。圖1顯示了
2022-11-15 06:00:03

可實(shí)現(xiàn)98%的效率的174W同步降壓轉(zhuǎn)換器參考設(shè)計(jì)方案

描述此參考設(shè)計(jì)使用 TPS40170 同步降壓模式控制,以便將 35V - 45V 輸入步降至 29V/6A。此轉(zhuǎn)換器實(shí)現(xiàn)了全負(fù)荷時(shí) 98% 以上的效率。
2018-11-28 15:43:39

可讓中間總線(xiàn)轉(zhuǎn)換器的尺寸減小達(dá)50%的72 V混合式DC-DC轉(zhuǎn)換器

降壓轉(zhuǎn)換器結(jié)合起來(lái),與傳統(tǒng)降壓轉(zhuǎn)換器替代方案相比,最高可使DC-DC轉(zhuǎn)換器解決方案的尺寸減小50%。這一性能提升得益于其能夠在不影響效率的前提下將開(kāi)關(guān)頻率提高至3倍。換句話(huà)說(shuō),在相同頻率下工
2018-10-23 11:46:22

四輸出隔離式同步Fly-Buck升壓轉(zhuǎn)換器設(shè)計(jì)解決方案

描述PMP10545 是一種采用 LM5160 穩(wěn)壓 IC 的隔離型反激式轉(zhuǎn)換器,其初級(jí)側(cè)被配置為降壓升壓轉(zhuǎn)換器。此設(shè)計(jì)接受 9V 到 30V 的輸入電壓并可提供 +5.7V 的四個(gè)隔離式輸出,且
2018-11-14 16:06:58

基于4開(kāi)關(guān)降壓升壓轉(zhuǎn)換器的USB供電設(shè)計(jì)

轉(zhuǎn)換范圍、正極性、高能效和小尺寸方案。安森美半導(dǎo)體用于USB供電和USB-C應(yīng)用的NCP81239 4開(kāi)關(guān)降壓-升壓控制可以驅(qū)動(dòng)4個(gè)開(kāi)關(guān),使轉(zhuǎn)換器能夠降壓或升壓,并支持用戶(hù)滿(mǎn)足USB供電(PD)規(guī)格
2019-07-16 06:44:27

基于4開(kāi)關(guān)降壓升壓轉(zhuǎn)換器的USB供電設(shè)計(jì)

轉(zhuǎn)換范圍、正極性、高能效和小尺寸方案。安森美半導(dǎo)體用于USB供電和USB-C應(yīng)用的NCP81239 4開(kāi)關(guān)降壓-升壓控制可以驅(qū)動(dòng)4個(gè)開(kāi)關(guān),使轉(zhuǎn)換器能夠降壓或升壓,并支持用戶(hù)滿(mǎn)足USB供電(PD)規(guī)格
2020-10-30 09:04:18

基于降壓轉(zhuǎn)換器實(shí)現(xiàn)適用于小型負(fù)載的雙開(kāi)關(guān)降壓升壓解決方案包含BOM,PCB文件及光繪文件

描述此參考設(shè)計(jì)提供一種解決方案讓您通過(guò)降壓控制構(gòu)建適用于小型負(fù)載的雙開(kāi)關(guān)降壓升壓轉(zhuǎn)換器。8V 至 16V 的輸入電壓可轉(zhuǎn)換為 12V 輸出電壓(負(fù)載為 1A)。主要特色已構(gòu)建完成并通過(guò)測(cè)試價(jià)格實(shí)惠無(wú)需 2 個(gè)軟件降壓升壓 IC
2018-08-19 08:06:53

基于LTC7821設(shè)計(jì)可使DC-DC轉(zhuǎn)換器解決方案的尺寸減小50%

降壓轉(zhuǎn)換器結(jié)合起來(lái),與傳統(tǒng)降壓轉(zhuǎn)換器替代方案相比,最高可使轉(zhuǎn)換器解決方案的尺寸減小50%。這一性能提升得益于其能夠在不影響效率的前提下將開(kāi)關(guān)頻率提高至3倍。換句話(huà)說(shuō),在相同頻率下工
2018-12-03 10:58:08

基于PowerPath控制和高效率降壓升壓型轉(zhuǎn)換器的電源方案

具有智能 PowerPath 控制的 18V 降壓-升壓型轉(zhuǎn)換器以 95% 的效率從雙輸入提供 >2A 的電流
2019-07-31 06:23:56

基于TPS40425的高效率多相解決方案

描述 PMP8411 將兩個(gè)緊湊的兩相 45A 轉(zhuǎn)換器堆疊到一個(gè)四相 90A POL 解決方案中。它適用于電信基礎(chǔ)設(shè)施中的 ASIC 處理、工業(yè)和電信應(yīng)用中的 FPGA、通用高電流 POL 或采用
2022-09-16 06:27:46

基于TPS65580的三通道同步降壓轉(zhuǎn)換器參考設(shè)計(jì)方案

  導(dǎo)讀:TPS65580是一款先進(jìn)三端輸出 D-CAP2模式同步降壓轉(zhuǎn)換器芯片,該芯片使系統(tǒng)設(shè)計(jì)工程師在完成為多種終端設(shè)備提供電源穩(wěn)壓時(shí),提供具有成本效益、低器件數(shù)量、低待機(jī)電流的解決方案
2018-09-27 15:21:39

基于兩個(gè)QR反激式轉(zhuǎn)換器和四個(gè)降壓轉(zhuǎn)換器的十路輸出參考設(shè)計(jì)包含BOM,組裝圖及光繪文件

描述PMP10822 參考設(shè)計(jì)利用兩個(gè) QR 反激式轉(zhuǎn)換器和四個(gè)降壓轉(zhuǎn)換器。12V 和 24V 反激式轉(zhuǎn)換器效率接近 87%,而 16V 降壓轉(zhuǎn)換器效率大于 89%。主要特色12V 和 24V
2018-08-22 06:06:57

多輸出高效率3類(lèi)PoE反激轉(zhuǎn)換器設(shè)計(jì)方案

描述該轉(zhuǎn)換器用于需要高效率和多輸出的 3 類(lèi) PoE 應(yīng)用。采用同步整流的反激式轉(zhuǎn)換器效率出色,尺寸小,適合 IP 電話(huà)等 PoE 應(yīng)用。TPS23785B 包含基于 PoE 的器件和 PWM
2018-09-05 09:11:43

如何為降壓轉(zhuǎn)換器選擇正確的電容?

如何為降壓轉(zhuǎn)換器選擇正確的電容?
2021-06-08 07:18:43

如何借助LDO提高降壓轉(zhuǎn)換器的輕負(fù)載效率

設(shè)計(jì)一個(gè)空負(fù)載時(shí)流耗僅有幾微安的DC/DC轉(zhuǎn)換器可以被看作是用打火機(jī)油為大排量汽車(chē)補(bǔ)充燃料 – 你也許能讓他運(yùn)轉(zhuǎn),但是并不容易!在大多數(shù)新式DC/DC轉(zhuǎn)換器中,滿(mǎn)負(fù)載時(shí)的高效率已司空見(jiàn)慣,然而,在
2018-09-12 14:34:48

實(shí)現(xiàn)偏置電源的方法:線(xiàn)性,降壓轉(zhuǎn)換器或反激轉(zhuǎn)換器

設(shè)計(jì)偏置電源的方法。今天,將介紹3種在A(yíng)C-DC應(yīng)用中實(shí)現(xiàn)偏置電源的選擇:線(xiàn)性,降壓轉(zhuǎn)換器或反激轉(zhuǎn)換器。 線(xiàn)性偏置電源 BJT線(xiàn)性電路提供了一種使用最少元件的簡(jiǎn)單偏置電源解決方案。但是,使用這種
2020-09-07 16:46:57

開(kāi)關(guān)電容轉(zhuǎn)換器(SCC)降壓裝換氣解決方案

,它可以保留現(xiàn)有的下游 1S 電源架構(gòu),而無(wú)需更高的電池充電電流。隨后,我們展示了開(kāi)關(guān)電容轉(zhuǎn)換器 (SCC) 是最好的降壓轉(zhuǎn)換器解決方案,這要?dú)w功于其高效率和低 PCB 占位面積。介紹耗電的便攜式
2022-03-11 13:50:00

求分享,需要PF8200的所有降壓轉(zhuǎn)換器效率數(shù)據(jù)

需要 PF8200 的所有降壓轉(zhuǎn)換器效率數(shù)據(jù)。請(qǐng)幫助曲線(xiàn)。 輸入電壓為5V。 輸出配置: 降壓 1&2(2 相)- 0.8V,7A 降壓 3 - 0.8V,0.1A 降壓 4
2023-05-16 09:04:11

深度剖析升壓轉(zhuǎn)換器

,這會(huì)使電源經(jīng)歷雙重轉(zhuǎn)換。兩次電源轉(zhuǎn)換步驟的效率是這些轉(zhuǎn)換步驟中每次轉(zhuǎn)換效率的乘積,所以,我所描述情況下的總體效率是比較低的。例如,如果升壓轉(zhuǎn)換器效率為90%,降壓轉(zhuǎn)換器效率為95%,那么總體效率
2022-11-17 06:46:15

混合轉(zhuǎn)換器簡(jiǎn)化了數(shù)據(jù)中心和電信系統(tǒng)中的48 V / 54 V降壓轉(zhuǎn)換

來(lái)減小電感尺寸,但是這會(huì)降低轉(zhuǎn)換器效率,因?yàn)榕c開(kāi)關(guān)相關(guān)的損耗會(huì)導(dǎo)致不可接受的熱應(yīng)力。與傳統(tǒng)的基于電感的降壓轉(zhuǎn)換器相比,開(kāi)關(guān)電容轉(zhuǎn)換器(電荷泵)可顯著提高效率并縮小解決方案尺寸。在電荷泵中,使用飛跨
2019-04-16 18:27:07

用于便攜式工業(yè)設(shè)備的小型高效降壓-升壓轉(zhuǎn)換器

的運(yùn)行時(shí)間。圖1:TPS63025效率與輸出電流比較圖你可以在任何一個(gè)便攜式系統(tǒng)中設(shè)計(jì)一個(gè)降壓-升壓轉(zhuǎn)換器。如果你正在設(shè)計(jì)一個(gè)智能手機(jī),一個(gè)晶圓級(jí)芯片 (WCSP) 封裝提供最小的解決方案尺寸,并且
2018-09-03 15:17:17

用低壓差穩(wěn)壓提高降壓轉(zhuǎn)換器的輕載效率的實(shí)用方法

。此外,具有高輕載效率轉(zhuǎn)換器將采用頻率折返方案和非連續(xù)模式操作,從而導(dǎo)致噪聲輸出電壓和過(guò)多的EMI輻射。 LDO非常適合輕負(fù)載情況,因?yàn)樗鼈兛梢栽O(shè)計(jì)為在保持低噪聲輸出電壓的同時(shí)消耗非常低的電流。進(jìn)入
2019-04-05 08:30:00

用低壓差穩(wěn)壓提高降壓轉(zhuǎn)換器的輕載效率的實(shí)用方法

毫安。此外,具有高輕載效率轉(zhuǎn)換器將采用頻率折返方案和非連續(xù)模式操作,從而導(dǎo)致噪聲輸出電壓和過(guò)多的EMI輻射。 LDO非常適合輕負(fù)載情況,因?yàn)樗鼈兛梢栽O(shè)計(jì)為在保持低噪聲輸出電壓的同時(shí)消耗非常低的電流
2022-06-27 09:13:27

電源內(nèi)阻對(duì)DC-DC轉(zhuǎn)換器效率的影響

 DC-DC轉(zhuǎn)換器常用于采用電池供電的便攜式及其它高效系統(tǒng),在對(duì)電源電壓進(jìn)行升壓、降壓或反相時(shí),其效率高于95%。電源內(nèi)阻是限制效率的一個(gè)重要因素?! ×⑸铞坞娮訛榇蠹颐枋隽穗娫磧?nèi)阻的對(duì)效率
2021-11-16 08:52:21

電源管理IC TD1465 同步降壓轉(zhuǎn)換器

TD1465 40V 600mA 2MHz / 1MHz同步降壓轉(zhuǎn)換器TD1465是一款600mA同步降壓轉(zhuǎn)換器,集成了900mΩ功率MOSFET。 采用電流模式控制方案的TD1465設(shè)計(jì)可將
2018-05-24 09:51:25

符合CISPR22和EN55022的降壓型開(kāi)關(guān)轉(zhuǎn)換器和電源模塊

55022標(biāo)準(zhǔn)的A類(lèi)和B類(lèi)傳導(dǎo)及EMC輻射指標(biāo)要求,以及JESD22-B103/B104/B111標(biāo)準(zhǔn)對(duì)跌落、沖擊和振動(dòng)的要求?! axim低EMI喜馬拉雅方案  ·降壓型開(kāi)關(guān)轉(zhuǎn)換器MAX
2018-10-23 16:21:09

請(qǐng)問(wèn)設(shè)計(jì)高效非反向降壓-升壓轉(zhuǎn)換器有什么技巧?

降壓-升壓轉(zhuǎn)換器的操作原理是什么?高效非反向降壓-升壓轉(zhuǎn)換器的設(shè)計(jì)標(biāo)準(zhǔn)有哪些?
2021-04-13 06:03:21

負(fù)載點(diǎn)DC-DC轉(zhuǎn)換器解決電壓精度、效率和延遲問(wèn)題

。如果轉(zhuǎn)換器產(chǎn)生的熱量過(guò)多,則它將無(wú)法用于已然很熱的系統(tǒng)中。在上述解決方案中,LTC3310S內(nèi)部溫度升幅通過(guò)高效率操作而得以最小化,即使在CPU、SoC和FPGA等高功耗器件周?chē)膼毫訙囟葪l件下
2021-12-14 07:00:00

負(fù)載點(diǎn)DC-DC轉(zhuǎn)換器解決電壓精度、效率和延遲問(wèn)題

:熱量。如果轉(zhuǎn)換器產(chǎn)生的熱量過(guò)多,則它將無(wú)法用于已然很熱的系統(tǒng)中。在上述解決方案中,LTC3310S內(nèi)部溫度升幅通過(guò)高效率操作而得以最小化,即使在CPU、SoC和FPGA等高功耗器件周?chē)膼毫訙囟?/div>
2021-12-07 08:00:00

負(fù)輸出降壓轉(zhuǎn)換器的負(fù)輸入

單片No-Opto隔離式反激轉(zhuǎn)換器為負(fù)輸出降壓轉(zhuǎn)換器提供多種解決方案
2019-06-12 07:39:34

超級(jí)電容備用電源電路高效單轉(zhuǎn)換器解決方案

描述此參考設(shè)計(jì)介紹了一個(gè)備用電源電路,該電路通過(guò)使用降壓-升壓轉(zhuǎn)換器和兩個(gè)堆疊的超級(jí)電容器來(lái)實(shí)現(xiàn)電源中斷時(shí)的瞬時(shí)保護(hù)。該實(shí)施方案基于完全集成的 TPS63020 降壓-升壓轉(zhuǎn)換器電路,從而維持較小
2018-11-09 14:51:19

采用4開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器的USB供電設(shè)計(jì)

轉(zhuǎn)換范圍、正極性、高能效和小尺寸方案。安森美半導(dǎo)體用于USB供電和USB-C應(yīng)用的NCP81239 4開(kāi)關(guān)降壓-升壓控制可以驅(qū)動(dòng)4個(gè)開(kāi)關(guān),使轉(zhuǎn)換器能夠降壓或升壓,并支持用戶(hù)滿(mǎn)足USB供電(PD)規(guī)格
2018-10-30 09:05:44

采用TPS54478的高功率密度3A同步降壓轉(zhuǎn)換器解決方案

描述此設(shè)計(jì)展示了采用 TPS54478 的高功率密度 3A 同步降壓轉(zhuǎn)換器解決方案。輸入電壓范圍為 3V - 6V??傮w外形尺寸為 15.5mm x 7.8mm。
2018-07-23 09:21:10

針對(duì)高輸出阻抗能源的低損耗全波橋和高效率降壓轉(zhuǎn)換器

演示電路DC1459B-A是一款采用LTC3588-1的能量收集電源。 LTC3588-1集成了低損耗全波橋和高效率降壓轉(zhuǎn)換器,形成完整的能量收集解決方案,針對(duì)高輸出阻抗能源(如壓電傳感)進(jìn)行了優(yōu)化
2020-05-08 10:33:18

效率72W功率輸出的非同步降壓升壓轉(zhuǎn)換器

描述PMP7988 是一種非同步降壓升壓轉(zhuǎn)換器。此設(shè)計(jì)接受 8Vin 至 16Vin 輸入電壓(標(biāo)稱(chēng)輸入電壓為 12V),可實(shí)現(xiàn) 12V 輸出,并且能夠?yàn)樨?fù)載提供 6A 電流。主要特色 非同步降壓升壓轉(zhuǎn)換器72W 功率輸出小規(guī)模解決方案,具有高效率。
2018-12-17 15:34:46

高度集成的同步降壓轉(zhuǎn)換器TPS543C20技術(shù)資料下載

描述TPS543C20 是一款高度集成的同步降壓轉(zhuǎn)換器,專(zhuān)為高密度電源解決方案而量身定制,具有高性能集成 MOSFET 和極低的 RDSON,可實(shí)現(xiàn)高效率。此轉(zhuǎn)換器支持設(shè)計(jì) 1V、20A 電源,該
2018-07-13 10:14:48

高效 150W 降壓轉(zhuǎn)換器高效 150W 降壓轉(zhuǎn)換器

`描述此降壓轉(zhuǎn)換器的目的是在最小的電路板空間中提供 150W 的輸出功率,進(jìn)而實(shí)現(xiàn)高達(dá) 98.5% 的效率`
2015-04-22 16:00:03

高效150W單相同步降壓轉(zhuǎn)換器小尺寸解決方案

描述PMP8000 為單相同步降壓轉(zhuǎn)換器,在輸入電壓為 12V 時(shí)提供電流為 30A 的額定輸出電壓 5V。該設(shè)計(jì)使用 LM27403 同步降壓控制和 CSD87350Q5D 電源塊 MOSFET
2018-12-20 09:35:56

高效小尺寸112W單相同步降壓轉(zhuǎn)換器

描述PMP10691 為單相同步降壓轉(zhuǎn)換器,在輸入電壓為 12V、電流為 35A 時(shí)的額定輸出值為 3.3V。該設(shè)計(jì)使用 LM27403 同步降壓控制。與 250nH 鐵氧體輸出電感搭配使用時(shí)
2018-11-12 17:09:21

高效小尺寸35W單相同步降壓轉(zhuǎn)換器包括組裝圖和BOM表

描述PMP10740 為單相同步降壓轉(zhuǎn)換器,在輸入電壓為 5 V 時(shí)提供電流為 35 A 的額定輸出電壓 1 V。該設(shè)計(jì)使用 LM27403 同步降壓控制和兩個(gè) CSD87350Q5D 電源塊
2018-08-27 09:45:52

高速雙相驅(qū)動(dòng)MAX8811電子資料

概述:2相柵極驅(qū)動(dòng)MAX8811可控制多相同步降壓轉(zhuǎn)換器應(yīng)用中的功率MOSFET,為每相提供高達(dá)30A輸出電流。MAX8811和MAX8810A(多相電源控制)配合使用可提供高效、低成本的解決方案,適合各種多相供...
2021-04-20 07:09:42

#電源管理設(shè)計(jì) 降壓轉(zhuǎn)換器的布線(xiàn)設(shè)計(jì)探討

電源電源管理降壓轉(zhuǎn)換器
電子技術(shù)那些事兒發(fā)布于 2022-08-23 22:00:20

MAX77503是一款轉(zhuǎn)換器

MAX77503為同步、1.5A、降壓型DC-DC轉(zhuǎn)換器,優(yōu)化用于2節(jié)和3節(jié)電池供電和及USB-C應(yīng)用。轉(zhuǎn)換器工作在3V至14V輸入電源范圍。輸出電壓可通過(guò)I2C串口進(jìn)行調(diào)節(jié),范圍為0.8V至5V
2023-06-02 17:45:06

MAX8649 1.8A降壓轉(zhuǎn)換器

MAX8649 1.8A降壓轉(zhuǎn)換器
2009-11-08 17:53:08486

MAX17502同步降壓DC/DC轉(zhuǎn)換器

MAX17502 ,MAX17502高效率,高電壓,同步降壓型的DC-DC轉(zhuǎn)換器工作在4.5V至60V的輸入電壓范圍和設(shè)計(jì)應(yīng)用范圍
2012-06-04 14:12:451204

MAX16962同步降壓DC-DC轉(zhuǎn)換器

MAX16962是一個(gè)高效率,同步降壓轉(zhuǎn)換器工作在2.7V至5.5V輸入電壓范圍,并提供了一個(gè)0.8V至3.6V的輸出電壓范圍。
2012-08-01 11:09:221035

MAX20021/MAX20022低電壓降壓DC-DC轉(zhuǎn)換器

MAX20021/MAX20022電源管理IC(PMIC)集成了4個(gè)低電壓,高效率,降壓型DC-DC轉(zhuǎn)換器
2013-03-25 16:46:442358

MAX867 用升壓控制器驅(qū)動(dòng)的降壓轉(zhuǎn)換器

MAX867 用升壓控制器驅(qū)動(dòng)的降壓轉(zhuǎn)換器
2016-08-18 18:38:390

MAX1706 兩節(jié)AA電池供電的降壓轉(zhuǎn)換器

MAX1706 兩節(jié)AA電池供電的降壓轉(zhuǎn)換器
2016-08-18 18:38:390

MAX1627 兩節(jié)AA電池供電的降壓轉(zhuǎn)換器

MAX1627 兩節(jié)AA電池供電的降壓轉(zhuǎn)換器
2016-08-18 18:38:390

高輕載效率PSM紋波優(yōu)化降壓轉(zhuǎn)換器的設(shè)計(jì)_崔慶

高輕載效率PSM紋波優(yōu)化降壓轉(zhuǎn)換器的設(shè)計(jì)_崔慶
2017-01-08 14:36:352

降壓轉(zhuǎn)換器效率的分析及功率損耗計(jì)算

同步降壓電路廣泛用于為系統(tǒng)芯片提供低電壓和大電流的非隔離電源。實(shí)現(xiàn)同步降壓轉(zhuǎn)換器的功率損耗并提高效率對(duì)于電源設(shè)計(jì)人員來(lái)說(shuō)非常重要。應(yīng)用筆記介紹了降壓轉(zhuǎn)換器效率的分析,并實(shí)現(xiàn)了同步降壓轉(zhuǎn)換器的主要功率元件損耗。
2022-04-20 16:52:023763

如何借助LDO提高降壓轉(zhuǎn)換器的輕負(fù)載效率 – I

如何借助LDO提高降壓轉(zhuǎn)換器的輕負(fù)載效率 – I
2022-11-04 09:52:020

效率 >85% 的 12 至 5 VDC 降壓轉(zhuǎn)換器

效率 >85% 的 12 至 5 VDC 降壓轉(zhuǎn)換器
2022-11-15 19:40:520

如何測(cè)量多相降壓轉(zhuǎn)換器集成電路的效率

由于多相降壓轉(zhuǎn)換器的性質(zhì),靜態(tài)工作條件下的感知效率會(huì)有所不同,具體取決于負(fù)載和輸出電壓測(cè)量連接以及PCB布局的對(duì)稱(chēng)性。評(píng)估多相降壓轉(zhuǎn)換器的工程師應(yīng)了解本文探討的效率測(cè)量的細(xì)微差別以及PCB布局。需要
2023-06-15 16:25:32495

具有小解決方案尺寸的TPS6380x高效率、低IQ 降壓/升壓轉(zhuǎn)換器數(shù)據(jù)表

電子發(fā)燒友網(wǎng)站提供《具有小解決方案尺寸的TPS6380x高效率、低IQ 降壓/升壓轉(zhuǎn)換器數(shù)據(jù)表.pdf》資料免費(fèi)下載
2024-03-07 10:10:270

已全部加載完成