電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>工業(yè)控制>機(jī)器視覺>MS-CNN - 卷積神經(jīng)網(wǎng)絡(luò)(CNN)在無人駕駛中應(yīng)用的3D感知與物體檢測

MS-CNN - 卷積神經(jīng)網(wǎng)絡(luò)(CNN)在無人駕駛中應(yīng)用的3D感知與物體檢測

上一頁123全文
收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

基于3D數(shù)據(jù)卷積神經(jīng)網(wǎng)絡(luò)物體識(shí)別

FusionNet的核心是全新的、應(yīng)用于3D物體的三維卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)。我們必須在多個(gè)方面調(diào)整傳統(tǒng)的CNN以使其有效。
2020-01-16 16:36:003423

什么是卷積神經(jīng)網(wǎng)絡(luò)?完整的卷積神經(jīng)網(wǎng)絡(luò)(CNNS)解析

卷積神經(jīng)網(wǎng)絡(luò)CNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),在圖像上表現(xiàn)特別出色。卷積神經(jīng)網(wǎng)絡(luò)由Yan LeCun在1998年提出,可以識(shí)別給定輸入圖像中存在的數(shù)字。
2022-08-10 11:49:0618292

使用PyTorch深度解析卷積神經(jīng)網(wǎng)絡(luò)

卷積神經(jīng)網(wǎng)絡(luò)CNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),在圖像上表現(xiàn)特別出色。卷積神經(jīng)網(wǎng)絡(luò)由Yan LeCun在1998年提出,可以識(shí)別給定輸入圖像中存在的數(shù)字。
2022-09-21 10:12:50637

卷積神經(jīng)網(wǎng)絡(luò)(CNN)的工作原理 神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程

前文《卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)?》中,我們比較了在微控制器中運(yùn)行經(jīng)典線性規(guī)劃程序與運(yùn)行CNN的區(qū)別,并展示了CNN的優(yōu)勢。我們還探討了CIFAR網(wǎng)絡(luò),該網(wǎng)絡(luò)可以對(duì)圖像中的貓、房子或自行車等對(duì)象進(jìn)行分類,還可以執(zhí)行簡單的語音識(shí)別。本文重點(diǎn)解釋如何訓(xùn)練這些神經(jīng)網(wǎng)絡(luò)以解決實(shí)際問題。
2023-09-05 10:19:43865

卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

【深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡(luò)—深度卷積網(wǎng)絡(luò):實(shí)例探究及學(xué)習(xí)總結(jié)

《深度學(xué)習(xí)工程師-吳恩達(dá)》03卷積神經(jīng)網(wǎng)絡(luò)—深度卷積網(wǎng)絡(luò):實(shí)例探究 學(xué)習(xí)總結(jié)
2020-05-22 17:15:57

卷積神經(jīng)網(wǎng)絡(luò)一維卷積的處理過程

以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署云端(服務(wù)器上),設(shè)備端采集到數(shù)據(jù)通過網(wǎng)絡(luò)發(fā)送給服務(wù)器做inference(推理),結(jié)果再通過網(wǎng)絡(luò)返回給設(shè)備端。如今越來越多的神經(jīng)網(wǎng)絡(luò)部署嵌入式設(shè)備端上,即
2021-12-23 06:16:40

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)入門資料

卷積神經(jīng)網(wǎng)絡(luò)入門詳解
2019-02-12 13:58:26

卷積神經(jīng)網(wǎng)絡(luò)原理及發(fā)展過程

Top100論文導(dǎo)讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅰ)
2019-09-06 17:25:54

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問題,我們似乎可以給出相對(duì)簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

網(wǎng)絡(luò) GhostNet。由于卷積神經(jīng)網(wǎng)絡(luò)的一系列突破性研究成果, 并根據(jù)不同的任務(wù)需求不斷改進(jìn),使其目標(biāo)檢測、 語義分割、自然語言處理等不同的任務(wù)均獲得了 成功的應(yīng)用。基于以上認(rèn)識(shí),本文首先概括性
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)是什么

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)
2020-05-05 18:12:50

卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)的整體網(wǎng)絡(luò)結(jié)構(gòu)和發(fā)展過程

Top100論文導(dǎo)讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅱ)
2019-08-22 14:20:39

卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)?

抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來越多地支持以前無法實(shí)現(xiàn)或非常難以實(shí)現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò)CNN) 及其 AI 系統(tǒng)機(jī)器學(xué)習(xí)的重要性。CNN 是從
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

無人駕駛與自動(dòng)駕駛的差別性

駕駛、自動(dòng)駕駛汽車使用的雷達(dá)主要目的是測量前后車的車距,使用攝像頭、毫米波雷達(dá)等安裝在前后;而無人駕駛汽車除了需要配備前后保險(xiǎn)杠雷達(dá)之外,最核心的信息來自于高精度3D激光雷達(dá),進(jìn)行空間建模。 受益對(duì)象
2017-09-28 16:50:52

無人駕駛分級(jí)及關(guān)鍵技術(shù)

無人駕駛分級(jí)無人駕駛汽車關(guān)鍵技術(shù)
2021-01-21 07:13:47

無人駕駛導(dǎo)航平臺(tái)

和實(shí)用性方面走在前列的國家是美國和德國,且已經(jīng)有多套系統(tǒng)城市運(yùn)營和試運(yùn)營,均取得了不錯(cuò)的效果。我國無人駕駛汽車的開發(fā)方面要比國外稍晚。國防科技大學(xué)從20世紀(jì)80年代開始進(jìn)行該項(xiàng)技術(shù)研究。無人駕駛
2014-11-11 11:21:30

無人駕駛汽車的工作原理是什么?

無人駕駛汽車的工作原理是什么?無人駕駛汽車包括哪些技術(shù)?
2021-06-28 07:19:59

無人駕駛電子與安全

,處理器經(jīng)過數(shù)據(jù)分析然后根據(jù)機(jī)器學(xué)習(xí)長期積累的駕駛經(jīng)驗(yàn)選擇最優(yōu)的解決方案,直接跨越到無人駕駛的階段?;诖髷?shù)據(jù)的分析,將可能出現(xiàn)的各種隱患消除未發(fā)生的萌芽。不管是安全駕駛還是無人駕駛都需要借助各類
2017-02-22 16:07:56

無人駕駛硬件之傳感器平臺(tái)

平臺(tái)的設(shè)計(jì)直接決定了無人駕駛對(duì)環(huán)境的感知能力、計(jì)算性能與能耗、魯棒性、安全性等。無人駕駛的硬件平臺(tái)又分為傳感器平臺(tái)、計(jì)算平臺(tái)、以及控制平臺(tái)三大部分。由于篇幅的問題,整個(gè)硬件平臺(tái)將被拆分為兩個(gè)部分,本文
2017-09-30 16:50:53

神經(jīng)網(wǎng)絡(luò)解決方案讓自動(dòng)駕駛成為現(xiàn)實(shí)

制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開辟了令人興奮的研究途徑。為了實(shí)現(xiàn)從諸如高速公路全程自動(dòng)駕駛儀的短時(shí)輔助模式到專職無人駕駛旅行的自動(dòng)駕駛,汽車制造業(yè)一直尋求讓響應(yīng)速度更快、識(shí)別準(zhǔn)確度更高的方法,而深度
2017-12-21 17:11:34

AI知識(shí)科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò),前面的層訓(xùn)練出的特征作為下一層的輸入,所以越到后面的層,特征越具體。卷積神經(jīng)網(wǎng)絡(luò)大型圖像處理方面展示出了非凡的效果。例如,我們需要在眾多圖像鑒別出一只貓,人類可以通過已有的常識(shí)判斷出特征
2018-06-05 10:11:50

TF之CNN:Tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的嘻嘻哈哈事之詳細(xì)攻略

TF之CNN:Tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的嘻嘻哈哈事之詳細(xì)攻略
2018-12-19 17:03:10

《 AI加速器架構(gòu)設(shè)計(jì)與實(shí)現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀后感

分成多個(gè)組別進(jìn)行處理。本章節(jié),對(duì)常見網(wǎng)絡(luò)算子進(jìn)行了說明(如圖6),卷積神經(jīng)網(wǎng)絡(luò)的核心運(yùn)算方式是卷積操作,池化操作和全連接操作。 圖1 思維導(dǎo)圖 圖2 GCN模塊分布圖 圖3 GCN模塊之間的關(guān)系
2023-09-11 20:34:01

【PYNQ-Z2申請(qǐng)】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

,得到訓(xùn)練參數(shù)2、利用開發(fā)板arm與FPGA聯(lián)合的特性,arm端實(shí)現(xiàn)圖像預(yù)處理已經(jīng)卷積神經(jīng)網(wǎng)絡(luò)的池化、激活函數(shù)和全連接,FPGA端實(shí)現(xiàn)卷積運(yùn)算3、對(duì)整個(gè)系統(tǒng)進(jìn)行調(diào)試。4、基本實(shí)現(xiàn)系統(tǒng)的基礎(chǔ)上
2018-12-19 11:37:22

【uFun試用申請(qǐng)】基于cortex-m系列核和卷積神經(jīng)網(wǎng)絡(luò)算法的圖像識(shí)別

項(xiàng)目名稱:基于cortex-m系列核和卷積神經(jīng)網(wǎng)絡(luò)算法的圖像識(shí)別試用計(jì)劃:本人在圖像識(shí)別領(lǐng)域有三年多的學(xué)習(xí)和開發(fā)經(jīng)驗(yàn),曾利用nesys4ddr的fpga開發(fā)板,設(shè)計(jì)過基于cortex-m3的軟核
2019-04-09 14:12:24

一文詳解CNN

1 CNN簡介 CNN卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks),是一類包含卷積計(jì)算的神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)(deep learning)的代表算法之一,圖像識(shí)別
2023-08-18 06:56:34

人臉識(shí)別、語音翻譯、無人駕駛...這些高科技都離不開深度神經(jīng)網(wǎng)絡(luò)了!

了。下面介紹幾種深度學(xué)習(xí)的方法,它們使識(shí)別錯(cuò)誤率極大地降低。 卷積神經(jīng)網(wǎng)絡(luò):AlexNet 2012 年,深度學(xué)習(xí)第一次被運(yùn)用到 ImageNet 比賽。其效果非常顯著, 錯(cuò)誤率從前一年的 26
2018-05-11 11:43:14

什么是圖卷積神經(jīng)網(wǎng)絡(luò)

卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡(luò)

的深度神經(jīng)網(wǎng)絡(luò)運(yùn)用的方法。AlexNet研發(fā)的時(shí)候,使用的GTX580僅有3GB的顯存,所以創(chuàng)造性的把模型拆解兩張顯卡,架構(gòu)如下:1.第一層是卷積層,針對(duì)224x224x3的輸入圖片進(jìn)行卷積操作
2018-05-08 15:57:47

全連接神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

關(guān)于卷積神經(jīng)網(wǎng)絡(luò)探秘的簡單了解

卷積神經(jīng)網(wǎng)絡(luò)探秘
2019-06-04 11:59:35

利用Keras實(shí)現(xiàn)四種卷積神經(jīng)網(wǎng)絡(luò)(CNN)可視化

Keras實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)(CNN)可視化
2019-07-12 11:01:52

可分離卷積神經(jīng)網(wǎng)絡(luò) Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識(shí)別

,接下來是密集全連接層?!?深度可分離卷積神經(jīng)網(wǎng)絡(luò) (DS-CNN)最近,深度可分離卷積神經(jīng)網(wǎng)絡(luò)被推薦為標(biāo)準(zhǔn) 3D 卷積運(yùn)算的高效替代方案,并已用于實(shí)現(xiàn)計(jì)算機(jī)視覺的緊湊網(wǎng)絡(luò)架構(gòu)。DS-CNN 首先使用獨(dú)立
2021-07-26 09:46:37

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例,針對(duì) FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41

如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢

巡線智能車控制CNN網(wǎng)絡(luò)有何應(yīng)用?嵌入式單片機(jī)神經(jīng)網(wǎng)絡(luò)該怎樣去使用?如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢?
2021-12-21 07:47:24

如何用卷積神經(jīng)網(wǎng)絡(luò)方法去解決機(jī)器監(jiān)督學(xué)習(xí)下面的分類問題?

人工智能下面有哪些機(jī)器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)CNN)方法去解決機(jī)器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類問題?
2021-06-16 08:09:03

如何移植一個(gè)CNN神經(jīng)網(wǎng)絡(luò)到FPGA?

)第二步:使用Lattice sensAI 軟件編譯已訓(xùn)練好的神經(jīng)網(wǎng)絡(luò),定點(diǎn)化網(wǎng)絡(luò)參數(shù)。該軟件會(huì)根據(jù)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和預(yù)設(shè)的FPGA資源進(jìn)行分析并給出性能評(píng)估報(bào)告,此外用戶還可以軟件
2020-11-26 07:46:03

成熟的無人駕駛方案離不開激光雷達(dá)

廣泛的應(yīng)用。 由于激光雷達(dá)可以形成精度高達(dá)厘米級(jí)的 3D 環(huán)境地圖, 因此 ADAS 及無人駕駛系統(tǒng)具有重要作用。激光雷達(dá)無人駕駛的作用路徑規(guī)劃,是解決無人車從起點(diǎn)到終點(diǎn),走怎樣路徑
2017-10-23 17:51:41

百度無人駕駛車北京完成路測

。 據(jù)了解,百度無人駕駛車項(xiàng)目起于2013年,由百度研究院主導(dǎo)研發(fā),其技術(shù)核心是“百度汽車大腦”,包括高精度地圖、定位、感知、智能決策與控制四大模塊。百度無人駕駛車依托國際領(lǐng)先的交通場景物體識(shí)別技術(shù)和環(huán)境
2015-12-12 16:53:14

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐
2020-06-14 22:21:12

請(qǐng)問為什么要用卷積神經(jīng)網(wǎng)絡(luò)

為什么要用卷積神經(jīng)網(wǎng)絡(luò)?
2020-06-13 13:11:39

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測等機(jī)器
2021-12-14 07:35:25

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

時(shí)空記憶。增加了幾個(gè)非局部模塊后,我們的“非局部神經(jīng)網(wǎng)絡(luò)”結(jié)構(gòu)能比二維和三維卷積網(wǎng)絡(luò)視頻分類取得更準(zhǔn)確的結(jié)果。另外,非局部神經(jīng)網(wǎng)絡(luò)計(jì)算上也比三維卷積神經(jīng)網(wǎng)絡(luò)更加經(jīng)濟(jì)。我們 Kinetics
2018-11-12 14:52:50

卷積神經(jīng)網(wǎng)絡(luò)(CNN)的簡單介紹及代碼實(shí)現(xiàn)

卷積神經(jīng)網(wǎng)絡(luò)(CNN)的基礎(chǔ)介紹見 ,這里主要以代碼實(shí)現(xiàn)為主。 CNN是一個(gè)多層的神經(jīng)網(wǎng)絡(luò),每層由多個(gè)二維平面組成,而每個(gè)平面由多個(gè)獨(dú)立神經(jīng)元組成。 以MNIST作為數(shù)據(jù)庫,仿照LeNet-5
2017-11-15 12:27:3918949

【科普】卷積神經(jīng)網(wǎng)絡(luò)(CNN)基礎(chǔ)介紹

對(duì)卷積神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)進(jìn)行介紹,主要內(nèi)容包括卷積神經(jīng)網(wǎng)絡(luò)概念、卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)、卷積神經(jīng)網(wǎng)絡(luò)求解、卷積神經(jīng)網(wǎng)絡(luò)LeNet-5結(jié)構(gòu)分析、卷積神經(jīng)網(wǎng)絡(luò)注意事項(xiàng)。一、卷積神經(jīng)網(wǎng)絡(luò)概念 上世紀(jì)60年代
2017-11-16 01:00:0210692

卷積神經(jīng)網(wǎng)絡(luò)檢測臉部關(guān)鍵點(diǎn)的教程之卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練與數(shù)據(jù)擴(kuò)充

上一次我們用了單隱層的神經(jīng)網(wǎng)絡(luò),效果還可以改善,這一次就使用CNN卷積神經(jīng)網(wǎng)絡(luò) 上圖演示了卷積操作 LeNet-5式的卷積神經(jīng)網(wǎng)絡(luò),是計(jì)算機(jī)視覺領(lǐng)域近期取得的巨大突破的核心。卷積層和之前的全連接
2017-11-16 11:45:072012

卷積神經(jīng)網(wǎng)絡(luò)CNN圖解

之前在網(wǎng)上搜索了好多好多關(guān)于CNN的文章,由于網(wǎng)絡(luò)上的文章很多斷章取義或者描述不清晰,看了很多youtobe上面的教學(xué)視頻還是沒有弄懂,最后經(jīng)過痛苦漫長的煎熬之后對(duì)于神經(jīng)網(wǎng)絡(luò)卷積有了粗淺的了解
2017-11-16 13:18:4056168

卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析-LeNet

對(duì)于神經(jīng)網(wǎng)絡(luò)卷積有了粗淺的了解,關(guān)于CNN 卷積神經(jīng)網(wǎng)絡(luò),需要總結(jié)深入的知識(shí)有很多:人工神經(jīng)網(wǎng)絡(luò) ANN卷積神經(jīng)網(wǎng)絡(luò)CNN 卷積神經(jīng)網(wǎng)絡(luò)CNN-BP算法卷積神經(jīng)網(wǎng)絡(luò)CNN-caffe應(yīng)用卷積神經(jīng)網(wǎng)絡(luò)CNN-LetNet分析 LetNet網(wǎng)絡(luò).
2017-11-16 13:28:012562

3D卷積神經(jīng)網(wǎng)絡(luò)的手勢識(shí)別

傳統(tǒng)2D卷積神經(jīng)網(wǎng)絡(luò)對(duì)于視頻連續(xù)幀圖像的特征提取容易丟失目標(biāo)時(shí)間軸上的運(yùn)動(dòng)信息,導(dǎo)致識(shí)別準(zhǔn)確度較低。為此,提出一種基于多列深度3D卷積神經(jīng)網(wǎng)絡(luò)3D CNN)的手勢識(shí)別方法。采用3D卷積核對(duì)
2018-01-30 13:59:192

卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析 - LeNet

之前在網(wǎng)上搜索了好多好多關(guān)于CNN的文章,由于網(wǎng)絡(luò)上的文章很多斷章取義或者描述不清晰,看了很多youtobe上面的教學(xué)視頻還是沒有弄懂,最后經(jīng)過痛苦漫長的煎熬之后對(duì)于神經(jīng)網(wǎng)絡(luò)卷積有了粗淺的了解
2018-10-02 07:41:01544

神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的原理

卷積神經(jīng)網(wǎng)絡(luò) (Convolutional Neural Network, CNN) 是一種源于人工神經(jīng)網(wǎng)絡(luò)(Neural Network, NN)的深度機(jī)器學(xué)習(xí)方法,近年來在圖像識(shí)別領(lǐng)域取得了巨大
2021-03-25 09:45:217

MATLAB實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的源代碼

MATLAB實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的源代碼
2021-04-21 10:15:3616

干貨速來!詳析卷積神經(jīng)網(wǎng)絡(luò)(CNN)的特性和應(yīng)用

前文《 卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)? 》中,我們比較了在微控制器中運(yùn)行經(jīng)典線性規(guī)劃程序與運(yùn)行CNN的區(qū)別,并展示了CNN的優(yōu)勢。我們還探討了CIFAR網(wǎng)絡(luò),該網(wǎng)絡(luò)可以對(duì)圖像中的貓、房子或自行車
2023-03-27 22:50:02556

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30806

卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)

Learning)的應(yīng)用,通過運(yùn)用多層卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),可以自動(dòng)地進(jìn)行特征提取和學(xué)習(xí),進(jìn)而實(shí)現(xiàn)圖像分類、物體識(shí)別、目標(biāo)檢測、語音識(shí)別和自然語言翻譯等任務(wù)。 卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)包括:輸入層、卷積層、激活函數(shù)、池化層和全連接層。 在CNN中,輸入層通常是代表圖像的矩陣或向量,而卷積層是卷積
2023-08-17 16:30:35804

卷積神經(jīng)網(wǎng)絡(luò)python代碼

卷積神經(jīng)網(wǎng)絡(luò)python代碼 ; 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種可以在圖像處理和語音識(shí)別等領(lǐng)域中很好地應(yīng)用的神經(jīng)網(wǎng)絡(luò)。它的原理是通過不斷
2023-08-21 16:41:35615

python卷積神經(jīng)網(wǎng)絡(luò)cnn的訓(xùn)練算法

python卷積神經(jīng)網(wǎng)絡(luò)cnn的訓(xùn)練算法? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)一直是深度學(xué)習(xí)領(lǐng)域重要的應(yīng)用之一,被廣泛應(yīng)用于圖像、視頻、語音等領(lǐng)域
2023-08-21 16:41:37859

卷積神經(jīng)網(wǎng)絡(luò)詳解 卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層及各層功能

多維數(shù)組而設(shè)計(jì)的神經(jīng)網(wǎng)絡(luò)。CNN不僅廣泛應(yīng)用于計(jì)算機(jī)視覺領(lǐng)域,還在自然語言處理、語音識(shí)別和游戲等領(lǐng)域有廣泛應(yīng)用。下文將詳細(xì)地介紹CNN的各層及其功能。 1.卷積層(Convolutional
2023-08-21 16:41:404399

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種在神經(jīng)網(wǎng)絡(luò)領(lǐng)域內(nèi)廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。相較于傳統(tǒng)
2023-08-21 16:41:453487

卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)

卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network,CNN)是一種基于深度學(xué)習(xí)技術(shù)的神經(jīng)網(wǎng)絡(luò),由于其出色的性能
2023-08-21 16:41:481659

卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容?

卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域中最廣泛應(yīng)用的模型之一,主要應(yīng)用于圖像、語音
2023-08-21 16:41:521305

卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋

。CNN可以幫助人們實(shí)現(xiàn)許多有趣的任務(wù),如圖像分類、物體檢測、語音識(shí)別、自然語言處理和視頻分析等。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的工作原理并用通俗易懂的語言解釋。 1.概述 卷積神經(jīng)網(wǎng)絡(luò)是一個(gè)由神經(jīng)元構(gòu)成的深度神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。在卷積神經(jīng)網(wǎng)絡(luò)中,
2023-08-21 16:49:242216

卷積神經(jīng)網(wǎng)絡(luò)如何識(shí)別圖像

為多層卷積層、池化層和全連接層。CNN模型通過訓(xùn)練識(shí)別并學(xué)習(xí)高度復(fù)雜的圖像模式,對(duì)于識(shí)別物體和進(jìn)行圖像分類等任務(wù)有著非常優(yōu)越的表現(xiàn)。本文將會(huì)詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)如何識(shí)別圖像,主要包括以下幾個(gè)方面: 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和原理 2. 卷積神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練過程 3.
2023-08-21 16:49:271284

卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)

卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)模型,其具有三大特點(diǎn):局部感知、參數(shù)共享和下采樣。 一、局部感知 卷積神經(jīng)網(wǎng)絡(luò)
2023-08-21 16:49:323045

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷程 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域
2023-08-21 16:49:391136

卷積神經(jīng)網(wǎng)絡(luò)基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)主要包括什么

卷積神經(jīng)網(wǎng)絡(luò)基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)主要包括什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛用于圖像識(shí)別、自然語言處理、語音識(shí)別等領(lǐng)域
2023-08-21 16:57:193561

卷積神經(jīng)網(wǎng)絡(luò)層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)卷積層講解

卷積神經(jīng)網(wǎng)絡(luò)層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)卷積層講解 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)模型,在許多視覺相關(guān)的任務(wù)中表現(xiàn)出色,如圖
2023-08-21 16:49:423757

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類、物體識(shí)別、語音識(shí)別等領(lǐng)域
2023-08-21 16:49:461229

卷積神經(jīng)網(wǎng)絡(luò)算法原理

卷積神經(jīng)網(wǎng)絡(luò)算法原理? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)(Deep Learning)的模型,它能夠自動(dòng)地從圖片、音頻、文本等數(shù)據(jù)中提
2023-08-21 16:49:54690

卷積神經(jīng)網(wǎng)絡(luò)算法有哪些?

卷積神經(jīng)網(wǎng)絡(luò)算法有哪些?? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN) 是一種基于多層感知器(multilayer perceptron, MLP)的深度學(xué)習(xí)
2023-08-21 16:50:01977

卷積神經(jīng)網(wǎng)絡(luò)算法三大類

卷積神經(jīng)網(wǎng)絡(luò)算法三大類 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種常用的人工神經(jīng)網(wǎng)絡(luò),它的主要應(yīng)用領(lǐng)域是圖像識(shí)別和計(jì)算機(jī)視覺方面。CNN通過卷積
2023-08-21 16:50:07755

卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab

卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)網(wǎng)絡(luò)模型,其特點(diǎn)是具有卷積層(Convolutional Layer
2023-08-21 16:50:11745

卷積神經(jīng)網(wǎng)絡(luò)算法流程 卷積神經(jīng)網(wǎng)絡(luò)模型工作流程

,其獨(dú)特的卷積結(jié)構(gòu)可以有效地提取圖像和音頻等信息的特征,以用于分類、識(shí)別等任務(wù)。本文將從卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)、前向傳播算法、反向傳播算法等方面探討其算法流程與模型工作流程,并介紹其在圖像分類、物體檢測和人臉識(shí)別等領(lǐng)域中的應(yīng)用。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)
2023-08-21 16:50:191315

常見的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型

常見的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中最流行的模型之一,其結(jié)構(gòu)靈活,處理圖像、音頻、自然語言
2023-08-21 17:11:411641

cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型

cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),最初被廣泛應(yīng)用于計(jì)算機(jī)
2023-08-21 17:11:47680

卷積神經(jīng)網(wǎng)絡(luò)一共有幾層 卷積神經(jīng)網(wǎng)絡(luò)模型三層

神經(jīng)網(wǎng)絡(luò),經(jīng)過多層卷積、池化、非線性變換等復(fù)雜計(jì)算處理,可以從圖像、音頻、文本等數(shù)據(jù)中提取有用的特征。下文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和原理。 CNN 的層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)一共有三層,分別是輸入層、隱藏層和輸出層。隱藏層包括卷積層、池化層和全連接層。其中,隱藏
2023-08-21 17:11:533320

卷積神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點(diǎn)

卷積神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種從圖像、視頻、聲音和一系列多維信號(hào)中進(jìn)行學(xué)習(xí)的深度學(xué)習(xí)模型。它在計(jì)算機(jī)視覺、語音識(shí)別
2023-08-21 17:15:191881

卷積神經(jīng)網(wǎng)絡(luò)主要包括哪些 卷積神經(jīng)網(wǎng)絡(luò)組成部分

卷積神經(jīng)網(wǎng)絡(luò)主要包括哪些 卷積神經(jīng)網(wǎng)絡(luò)組成部分 卷積神經(jīng)網(wǎng)絡(luò)CNN)是一類廣泛應(yīng)用于計(jì)算機(jī)視覺、自然語言處理等領(lǐng)域的人工神經(jīng)網(wǎng)絡(luò)。它具有良好的空間特征學(xué)習(xí)能力,能夠處理具有二維或三維形狀的輸入數(shù)據(jù)
2023-08-21 17:15:22938

cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn)是什么

cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn)是什么? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種特殊的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),主要應(yīng)用于圖像處理和計(jì)算機(jī)視覺領(lǐng)域
2023-08-21 17:15:251027

cnn卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)模型

中,CNN已成為圖像識(shí)別和語音識(shí)別領(lǐng)域的熱門算法,廣泛應(yīng)用于自動(dòng)駕駛、醫(yī)學(xué)診斷、物體檢測等方面。 CNN的基本原理是利用卷積層提取圖像的特征,通過池化層降低特征的維度,然后通過全連接層將特征映射到輸出,實(shí)現(xiàn)分類或回歸任務(wù)。每個(gè)卷積
2023-08-21 17:15:57941

cnn卷積神經(jīng)網(wǎng)絡(luò)matlab代碼

cnn卷積神經(jīng)網(wǎng)絡(luò)matlab代碼? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中一種常用的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它是通過卷積層、池化層和全連接層等組合而成
2023-08-21 17:15:59798

cnn卷積神經(jīng)網(wǎng)絡(luò)簡介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼

cnn卷積神經(jīng)網(wǎng)絡(luò)簡介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是目前深度學(xué)習(xí)領(lǐng)域中應(yīng)用廣泛的一種神經(jīng)網(wǎng)絡(luò)模型。CNN的出現(xiàn)
2023-08-21 17:16:131617

卷積神經(jīng)網(wǎng)絡(luò)的定義、結(jié)構(gòu)和發(fā)展歷史

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種非常重要的機(jī)器學(xué)習(xí)算法,主要應(yīng)用于圖像處理領(lǐng)域,用于圖像分類、目標(biāo)識(shí)別、物體檢測等任務(wù)。該算法是深度學(xué)習(xí)領(lǐng)域的一個(gè)重要分支。下面具體介紹卷積神經(jīng)網(wǎng)絡(luò)的定義、結(jié)構(gòu)和發(fā)展歷史。
2023-08-21 17:26:04406

什么是卷積神經(jīng)網(wǎng)絡(luò)?為什么需要卷積神經(jīng)網(wǎng)絡(luò)?

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于處理具有類似網(wǎng)格結(jié)構(gòu)的數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)。它廣泛用于圖像和視頻識(shí)別、文本分類等領(lǐng)域。CNN可以自動(dòng)從訓(xùn)練數(shù)據(jù)中學(xué)習(xí)出合適的特征,并以此對(duì)新輸入的數(shù)據(jù)進(jìn)行分類或回歸等操作。
2023-08-22 18:20:371132

什么是卷積神經(jīng)網(wǎng)絡(luò)?如何MATLAB實(shí)現(xiàn)CNN?

卷積神經(jīng)網(wǎng)絡(luò)CNN 或 ConvNet)是一種直接從數(shù)據(jù)中學(xué)習(xí)的深度學(xué)習(xí)網(wǎng)絡(luò)架構(gòu)。 CNN 特別適合在圖像中尋找模式以識(shí)別對(duì)象、類和類別。它們也能很好地對(duì)音頻、時(shí)間序列和信號(hào)數(shù)據(jù)進(jìn)行分類。
2023-10-12 12:41:49422

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)模型,在圖像識(shí)別、語音識(shí)別、自然語言處理等領(lǐng)域有著廣泛的應(yīng)用。相比
2023-12-07 15:37:252279

已全部加載完成