ESD引起集成電路損壞原理模式及實(shí)例

2012年03月27日 16:40 來源:本站整理 作者:秩名 我要評論(0)

  一.ESD引起集成電路損傷的三種途徑(1)人體活動(dòng)引起的摩擦起電是重要的靜電來源,帶靜電的操作者與器件接觸并通過器件放電。(2)器件與用絕緣材料制作的包裝袋、傳遞盒和傳送帶等摩擦,使器件本身帶靜電,它與人體或地接觸時(shí)發(fā)生的靜電放電。(3)當(dāng)器件處在很強(qiáng)的靜電場中時(shí),因靜電感應(yīng)在器件內(nèi)部的芯片上將感應(yīng)出很高的電位差,從而引起芯片內(nèi)部薄氧化層的擊穿?;蛘吣骋还苣_與地相碰也會(huì)發(fā)生靜電放電。根據(jù)上述三種ESD的損傷途徑,建立了三種ESD損傷模型:人體帶電模型、器件帶電模型和場感應(yīng)模型。其中人體模型是主要的。

二.ESD損傷的失效模式(1)雙極型數(shù)字電路a.輸入端漏電流增加b.參數(shù)退化c.失去功能,其中對帶有肖特基管的STTL和LSTTL電路更為敏感。(2)雙極型線性電路a.輸入失調(diào)電壓增大b.輸入失調(diào)電流增大c.MOS電容(補(bǔ)償電容)漏電或短路d.失去功能(3)MOS集成電路a.輸入端漏電流增大b.輸出端漏電流增大c.靜態(tài)功耗電流增大d.失去功能(4)雙極型單穩(wěn)電路和振蕩器電路a.單穩(wěn)電路的單穩(wěn)時(shí)間發(fā)生變化b.振蕩器的振蕩頻率發(fā)生變化c.R.C連接端對地出現(xiàn)反向漏電。

三.ESD對集成電路的損壞形式a.MOS電路輸入端保護(hù)電路的二極管出現(xiàn)反向漏電流增大b.輸入端MOS管發(fā)生柵穿c.MOS電路輸入保護(hù)電路中的保護(hù)電阻或接觸孔發(fā)生燒毀d.引起ROM電路或PAL電路中的熔斷絲熔斷e.集成電路內(nèi)部的MOS電容器發(fā)生柵穿f.運(yùn)算放大器輸入端(對管)小電流放大系數(shù)減小g.集成電路內(nèi)部的精密電阻的阻值發(fā)生漂移h.與外接端子相連的鋁條被熔斷i.引起多層布線間的介質(zhì)擊穿(例如:輸入端鋁條與n+、間的介質(zhì)擊穿)四.ESD損傷機(jī)理(1)電壓型損傷a.柵氧化層擊穿(MOS電路輸入端、MOS電容)b.氣體電弧放電引起的損壞(芯片上鍵合根部、金屬化條的最窄間距處、聲表面波器件的梳狀電極條間)c.輸入端多晶硅電阻與鋁金屬化條間的介質(zhì)擊穿d.輸入/輸出端n+擴(kuò)區(qū)與鋁金屬化條間的介質(zhì)擊穿。(2)電流型損傷a.PN結(jié)短路(MOS電路輸入端保護(hù)二極管、線性電路輸入端保護(hù)網(wǎng)絡(luò))b.鋁條和多晶硅條在大電流作用下的損傷(主要在多晶硅條拐彎處和多晶硅條與鋁的接觸孔)c.多晶硅電阻和硅上薄膜電阻的阻值漂移(主要是高精度運(yùn)放和A/D、D/A電路)五.ESD損傷實(shí)例最容易受到靜電放電損傷的集成電路有:CCD、EPROM、微波集成電路、高精度運(yùn)算放大器、帶有MOS電容的放大器、H

  C、HCT、LSI、VLSI、精密穩(wěn)壓電路、A/D和D/A電路、普通MOS和CMOS、STTL、LSTTL等。

 ?。?)國外實(shí)例a.Motorola公司生產(chǎn)的MOS大規(guī)模集成電路─微處理器(CPU),在進(jìn)行老練試驗(yàn)的11個(gè)星期中仔細(xì)進(jìn)行了觀察和記錄。發(fā)現(xiàn)在試驗(yàn)開始階段因?yàn)闆]有采用導(dǎo)電盒放置樣品,拒收數(shù)與被試驗(yàn)元件總數(shù)相對比例約為40×10-n(n值為保密數(shù)字)。但從第四個(gè)星期開始,樣品采用鍍鎳盒放置后,則降低15×10-n。此試驗(yàn)相繼跟蹤了7個(gè)多星期,平均的拒收比例為18×10-n。說明MOS大規(guī)模電路在使用過程中必須采取嚴(yán)格的防ESD措施。

  b.某公司共進(jìn)行了18700只MOS電路的老練,發(fā)現(xiàn)失效率很高,經(jīng)分析和研究認(rèn)為大部分失效是由ESD引起。于是該公司為此問題專門寫了一份有改正措施的報(bào)告,并對全體有關(guān)人員進(jìn)行了防靜電放電損傷的技術(shù)培訓(xùn),器件采用防ESD包裝,加強(qiáng)了各項(xiàng)防ESD損傷的措施,后來又老練了18400只同種器件,拒收率降低到原來的1/3。

  c.某一批“64位隨機(jī)存貯器”,從封裝到成品測試,其成品損失率為2%,該存貯器為肖特基-雙極型大規(guī)模電路,經(jīng)調(diào)查,操作過程中曾使用過塑料盒傳遞器件,由于靜電放電損傷了輸入端的肖特基二極管,使二極管反向特性變軟或短路。

  d.一批“雙極模擬開關(guān)”集成電路,在裝上印制電路板,經(jīng)保形涂覆后,少數(shù)樣品出現(xiàn)輸入特性惡化。解剖分析后,發(fā)現(xiàn)輸入端(基極)的鋁金屬化跨過n+保護(hù)環(huán)擴(kuò)散層處發(fā)生短路或漏電,去除鋁后,可發(fā)現(xiàn)n+環(huán)上的氧化層有很小的擊穿孔。由于n+擴(kuò)區(qū)上的氧化層較薄,并且光刻腐蝕的速度較快,因而容易發(fā)生ESD擊穿,版圖設(shè)計(jì)時(shí),如果必須采用n+擴(kuò)散層作埋層穿接線,其位置應(yīng)慎重選擇,避免輸入端鋁金屬化跨過n+擴(kuò)區(qū),對于輸入端鋁條跨過n+擴(kuò)區(qū)的雙極電路,使用時(shí)應(yīng)采取必要的防靜電措施。

  e.測試和傳遞中出現(xiàn)肖特基TTL電路(54S181、54S420)電性能異常,輸入漏電增大。經(jīng)解剖分析,在金相顯微鏡下觀察芯片表面未發(fā)現(xiàn)任何電損傷痕跡,但在去除鋁和SiO2后,在輸入端的發(fā)射極接觸孔內(nèi)卻發(fā)現(xiàn)了較輕的小坑,再用CP4溶液進(jìn)行腐蝕后小坑變得更加明顯。用“靜電模擬器”進(jìn)行模擬試驗(yàn),出現(xiàn)的失效現(xiàn)象與它十分類似。可見這種失效是由ESD損傷引起,也可能是其它的輕度電損傷引起。

  f.某儀表系統(tǒng)輸入端使用的2N5179超高頻晶體管多次發(fā)生失效,失效模式為放大系數(shù)降低,特別是在小電流下(例如Ic=100μA)的放大系數(shù)下降到大約為1左右,同時(shí)eb結(jié)出現(xiàn)較大反向漏電。解剖后,在金相顯微鏡下觀察芯片表面,在eb極之間的鋁條上有一個(gè)很小的變色區(qū),它是由瞬間的電過應(yīng)力(電浪涌)引起的過合金區(qū),這種失效一般由靜電放電引起,對于輸入端為超高頻小功率管基極的電子系統(tǒng),輸入端應(yīng)設(shè)計(jì)輸入保護(hù)網(wǎng)絡(luò),如果系統(tǒng)特性不允許增加保護(hù)網(wǎng)絡(luò),則必須采取防靜電放電操作措施。

  g.帶有MOS電容器作為內(nèi)補(bǔ)償?shù)倪\(yùn)算放大器,在使用中常有失效,失效現(xiàn)象是輸出電壓在稍低于正電源電壓下發(fā)生閉鎖。經(jīng)解剖分析證實(shí),失效由MOS電容器出現(xiàn)大漏電引起,漏電電阻約為400Ω。因?yàn)樽餮a(bǔ)償?shù)腗OS電容器的一端直接與電路的外引線相連(V+端)。利用掃描電鏡(SEM)觀察,發(fā)現(xiàn)MOS電容邊緣明顯有很小的擊穿點(diǎn),此特征表明失效由ESD損傷引起。

  h.在一次系統(tǒng)裝配完畢后的檢查中,發(fā)現(xiàn)6只101A型雙極運(yùn)算放大器失效,失效模式是輸入失調(diào)電壓增大到40mV。用特性曲線圖示儀測試管腳-管腳間特性,出現(xiàn)輸入端特性異常。解剖后,利用金相顯微鏡觀察芯片上的輸入端,發(fā)現(xiàn)有飛弧狀的電損傷痕跡,它是電瞬變引起的電過應(yīng)力損傷,這種電瞬變可能是由ESD引起。經(jīng)調(diào)查,在印制板的電裝工藝線上,用靜電電壓表檢測印制板上的靜電電壓,在開路區(qū)域上電壓達(dá)800V以上,特別是在空氣干燥的冬季或進(jìn)行高溫烘烤時(shí),印制板上的靜電電壓更高。

 ?。?)國內(nèi)實(shí)例a.某廠生產(chǎn)的CMOS電路經(jīng)篩選入庫后,在抽查中每次都發(fā)現(xiàn)有較大數(shù)量失效(約占5%),失效模式為輸入漏電增大,經(jīng)調(diào)查與分析,發(fā)現(xiàn)失效是由ESD損傷引起的。因?yàn)樵搹S生產(chǎn)的CMOS電路在測試前后都放置于普通塑料盆內(nèi),塑料上的靜電荷傳遞給CMOS電路,在測試過程中,當(dāng)器件接觸人體或桌面上的接地金屬時(shí)就會(huì)立即引起放電,導(dǎo)致ESD損傷而失效。

12下一頁

本文導(dǎo)航

  • 第 1 頁:ESD引起集成電路損壞原理模式及實(shí)例(1)
  • 第 2 頁:防ESD措施

標(biāo)簽:集成電路(596)ESD(140)