電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>可編程邏輯>FPGA/ASIC技術(shù)>ARM與神經(jīng)網(wǎng)絡(luò)處理器通信方案的設(shè)計(jì)實(shí)現(xiàn)

ARM與神經(jīng)網(wǎng)絡(luò)處理器通信方案的設(shè)計(jì)實(shí)現(xiàn)

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

ARM和FPGA搭建神經(jīng)網(wǎng)絡(luò)處理器通信方案

FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2015-08-19 08:54:231936

ARM Cortex-M系列芯片神經(jīng)網(wǎng)絡(luò)推理庫CMSIS-NN詳解

1、ARM Cortex-M系列芯片神經(jīng)網(wǎng)絡(luò)推理庫CMSIS-NN詳解CMSIS-NN是用于ARM Cortex-M系列的芯片的神經(jīng)網(wǎng)絡(luò)推理庫,用于低性能芯片/架構(gòu)的神經(jīng)網(wǎng)絡(luò)部署
2022-08-19 16:06:43

神經(jīng)網(wǎng)絡(luò)Matlab程序

神經(jīng)網(wǎng)絡(luò)Matlab程序
2009-09-15 12:52:24

神經(jīng)網(wǎng)絡(luò)基本介紹

神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知模型  2.3 自適應(yīng)線性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)移植到STM32的方法

神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介

神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡(luò)解決方案讓自動(dòng)駕駛成為現(xiàn)實(shí)

使用最為有利的系統(tǒng)。訓(xùn)練往往在線下通過基于 CPU 的系統(tǒng)、圖形處理器 (GPU) 或現(xiàn)場(chǎng)可編程門陣列 (FPGA) 來完成。由于計(jì)算功能強(qiáng)大且設(shè)計(jì)人員對(duì)其很熟悉,這些是用于神經(jīng)網(wǎng)絡(luò)訓(xùn)練的最為理想
2017-12-21 17:11:34

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

AI知識(shí)科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)的發(fā)展可以追溯到二戰(zhàn)時(shí)期,那時(shí)候先輩們正想著如何用人類的方式去存儲(chǔ)和處理信息,于是他們開始構(gòu)建計(jì)算系統(tǒng)。由于當(dāng)時(shí)計(jì)算機(jī)機(jī)器和技術(shù)的發(fā)展限制,這一技術(shù)并沒有得到廣泛的關(guān)注和應(yīng)用。幾十年來
2018-06-05 10:11:50

CMSIS-NN神經(jīng)網(wǎng)絡(luò)內(nèi)核助力微控制效率提升

自然會(huì)想到Arm Cortex-M系列處理器內(nèi)核,那么如果您想要強(qiáng)化它的性能并且減少內(nèi)存消耗,CMSIS-NN就是您最好的選擇?;贑MSIS-NN內(nèi)核的神經(jīng)網(wǎng)絡(luò)推理運(yùn)算,對(duì)于運(yùn)行時(shí)間/吞吐量將會(huì)有4.6X的提升,而對(duì)于能效將有4.9X的提升。
2019-07-23 08:08:59

ETPU-Z2全可編程神經(jīng)網(wǎng)絡(luò)開發(fā)平臺(tái)

處理器的形式存在,專用于基于某個(gè)特定神經(jīng)網(wǎng)絡(luò)算法的特定應(yīng)用。在這樣的ASIC系統(tǒng)中,EEP-TPU的應(yīng)用將按照專用ASIC系統(tǒng)的方式,將特定流程的任務(wù)以軟件+硬件結(jié)合的方式實(shí)現(xiàn)。在特定的嵌入式系統(tǒng)中
2020-05-18 17:13:24

EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?

FPGA加速的關(guān)鍵因素是什么?EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?
2021-09-28 06:37:44

MATLAB神經(jīng)網(wǎng)絡(luò)

MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13

labview BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

請(qǐng)問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

matlab實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò) 精選資料分享

習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對(duì)于神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)是如何一直沒有具體實(shí)現(xiàn)一下:現(xiàn)看到一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對(duì)應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個(gè)數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21

《 AI加速架構(gòu)設(shè)計(jì)與實(shí)現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀后感

《 AI加速架構(gòu)設(shè)計(jì)與實(shí)現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀感 ? ?在本書的引言中也提到“一圖勝千言”,讀完第一章節(jié)后,對(duì)其進(jìn)行了一些歸納(如圖1),第一章對(duì)常見的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)行了介紹,舉例了一些結(jié)構(gòu)
2023-09-11 20:34:01

【PYNQ-Z2申請(qǐng)】基于PYNQ-Z2的神經(jīng)網(wǎng)絡(luò)圖形識(shí)別

神經(jīng)網(wǎng)絡(luò)編程,想基于此開發(fā)板,進(jìn)行神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí),訓(xùn)練和測(cè)試神經(jīng)網(wǎng)絡(luò)。項(xiàng)目計(jì)劃:1.基于官方的文檔及資料,熟悉此開發(fā)板。2.測(cè)試官方demo,學(xué)習(xí)ARM內(nèi)核和FPGA如何協(xié)調(diào)工作。3.基于自己最近
2019-01-09 14:48:59

【PYNQ-Z2申請(qǐng)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車

,并在屏幕上使用Qt綜合顯示小車實(shí)時(shí)圖像與神經(jīng)網(wǎng)絡(luò)控制實(shí)時(shí)狀態(tài)。PYNQ-Z2平臺(tái)搭載Xilinx Zynq7020芯片,擁有充足的可編程邏輯資源,并嵌入了雙核Cortex-A9處理器硬核,符合作品進(jìn)行
2018-12-19 11:36:24

【PYNQ-Z2申請(qǐng)】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

,得到訓(xùn)練參數(shù)2、利用開發(fā)板arm與FPGA聯(lián)合的特性,在arm實(shí)現(xiàn)圖像預(yù)處理已經(jīng)卷積核神經(jīng)網(wǎng)絡(luò)的池化、激活函數(shù)和全連接,在FPGA端實(shí)現(xiàn)卷積運(yùn)算3、對(duì)整個(gè)系統(tǒng)進(jìn)行調(diào)試。4、在基本實(shí)現(xiàn)系統(tǒng)的基礎(chǔ)上
2018-12-19 11:37:22

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)

python語言,可以很輕松地實(shí)現(xiàn)復(fù)雜的數(shù)學(xué)運(yùn)算,降低編程難度。下一篇文章,將通過具體代碼,演示基于神經(jīng)網(wǎng)絡(luò)的手寫圖形識(shí)別。
2019-03-03 22:10:19

【PYNQ-Z2試用體驗(yàn)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車 - 項(xiàng)目規(guī)劃

小車運(yùn)動(dòng)的控制信號(hào),實(shí)現(xiàn)小車自動(dòng)駕駛。在初步實(shí)現(xiàn)方案中,為了快速實(shí)現(xiàn)整體功能,使用軟件神經(jīng)網(wǎng)絡(luò)作為控制,使用單片機(jī)作為底盤電機(jī)的控制。在進(jìn)一步的實(shí)現(xiàn)中,所有數(shù)據(jù)處理和底盤控制全部由Zynq FPGA
2019-03-02 23:10:52

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競(jìng)爭(zhēng)學(xué)習(xí)的一個(gè)代表,競(jìng)爭(zhēng)型學(xué)習(xí)
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個(gè)隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實(shí)由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人工神經(jīng)網(wǎng)絡(luò)原理及下載

人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對(duì)如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個(gè)“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)課件

人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

什么是圖卷積神經(jīng)網(wǎng)絡(luò)?

圖卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29

何謂神經(jīng)網(wǎng)絡(luò)處理指令?有什么作用?

何謂神經(jīng)網(wǎng)絡(luò)處理指令?有什么作用?Armv8.1-M核心實(shí)施選項(xiàng)包括哪些?
2021-06-29 09:07:44

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

卷積神經(jīng)網(wǎng)絡(luò)一維卷積的處理過程

以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署在云端(服務(wù)上),設(shè)備端采集到數(shù)據(jù)通過網(wǎng)絡(luò)發(fā)送給服務(wù)做inference(推理),結(jié)果再通過網(wǎng)絡(luò)返回給設(shè)備端。如今越來越多的神經(jīng)網(wǎng)絡(luò)部署在嵌入式設(shè)備端上,即
2021-12-23 06:16:40

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

神經(jīng)網(wǎng)絡(luò)研究的第一次浪潮。1969 年美國數(shù)學(xué)家及人工智能先驅(qū) Minsky在其著作中證 明感知本質(zhì)上是一種線性模型[21],只能處理線性分 類問題,最簡(jiǎn)單的異或問題都無法正確分類,因此神 經(jīng)網(wǎng)絡(luò)的研究也
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介:什么是機(jī)器學(xué)習(xí)?

抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來越多地支持以前無法實(shí)現(xiàn)或非常難以實(shí)現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò) (CNN) 及其在 AI 系統(tǒng)中機(jī)器學(xué)習(xí)中的重要性。CNN 是從
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器實(shí)現(xiàn)關(guān)鍵詞識(shí)別

我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。關(guān)鍵詞識(shí)別
2021-07-26 09:46:37

圖像預(yù)處理和改進(jìn)神經(jīng)網(wǎng)絡(luò)推理的簡(jiǎn)要介紹

為提升識(shí)別準(zhǔn)確率,采用改進(jìn)神經(jīng)網(wǎng)絡(luò),通過Mnist數(shù)據(jù)集進(jìn)行訓(xùn)練。整體處理過程分為兩步:圖像預(yù)處理和改進(jìn)神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進(jìn)神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個(gè)過程分為兩個(gè)步驟:圖像預(yù)處理神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33

在xr806板子上如何實(shí)現(xiàn)用ncnn跑神經(jīng)網(wǎng)絡(luò)mnis呢

在xr806板子上如何實(shí)現(xiàn)用ncnn跑神經(jīng)網(wǎng)絡(luò)mnis呢?
2021-12-28 06:51:07

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過對(duì)系統(tǒng)性能的學(xué)習(xí)來實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于BP神經(jīng)網(wǎng)絡(luò)的辨識(shí)

基于BP神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:37:27

基于Cortex-M處理器的高精度關(guān)鍵詞識(shí)別實(shí)現(xiàn)

我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。關(guān)鍵詞識(shí)別
2019-07-23 06:59:07

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13

基于RBF神經(jīng)網(wǎng)絡(luò)的辨識(shí)

基于RBF神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:38:52

基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法解析

本文介紹了基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法,提出了基于FPGA的實(shí)現(xiàn)驗(yàn)證方案,詳細(xì)討論了實(shí)現(xiàn)該壓縮網(wǎng)絡(luò)組成的重要模塊MAC電路的流水線設(shè)計(jì)。
2021-05-06 07:01:59

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對(duì)在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41

如何使用Arm CMSIS-DSP實(shí)現(xiàn)經(jīng)典機(jī)器學(xué)習(xí)庫

用轉(zhuǎn)儲(chǔ)參數(shù)。它也解釋了如何距離函數(shù)可用于構(gòu)建聚類算法。 這些分類可用于異常檢測(cè)、聲音分類和圖像識(shí)別。 它們將需要使用智能功能,例如信號(hào)處理鏈的輸出,以及理解領(lǐng)域,并且將使用比神經(jīng)網(wǎng)絡(luò)更少的類
2023-08-02 07:12:59

如何使用STM32F4+MPU9150實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)識(shí)別手勢(shì)?

如何使用STM32F4+MPU9150實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)識(shí)別手勢(shì)?
2021-11-19 07:06:48

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?

如何用stm32cube.ai簡(jiǎn)化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)
2021-10-11 08:05:42

如何利用SoPC實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)速度控制?

不確定因素影響,并且隨著可編程片上系統(tǒng)SoPC和大規(guī)?,F(xiàn)場(chǎng)可編程門陣列FPGA的出現(xiàn),為神經(jīng)網(wǎng)絡(luò)控制的硬件實(shí)現(xiàn)提供了新的載體。
2019-08-12 06:25:35

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11

如何用ARM和FPGA搭建神經(jīng)網(wǎng)絡(luò)處理器通信方案

某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2021-05-21 06:35:27

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

(Digital Signal Processor)相比,現(xiàn)場(chǎng)可編程門陣列(Field Programma-ble Gate Array,F(xiàn)PGA)在神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)上更具優(yōu)勢(shì)。DSP處理器處理時(shí)采用指令順序執(zhí)行
2019-08-08 06:11:30

如何進(jìn)行高效的時(shí)序圖神經(jīng)網(wǎng)絡(luò)的訓(xùn)練

引入了圖采樣,以進(jìn)一步加速神經(jīng)網(wǎng)絡(luò)的訓(xùn)練并減少通信開銷?;谏鲜?b class="flag-6" style="color: red">通信縮減策略,本文提出了時(shí)序圖神經(jīng)網(wǎng)絡(luò)系統(tǒng)T-GCN。實(shí)驗(yàn)結(jié)果表明,T-GCN實(shí)現(xiàn)了最高7.9倍的整體性能提升。在圖采樣性能上,本文提出的線段二分搜索采樣算法能夠實(shí)現(xiàn)最高38.8倍的采樣性能提升。原作者:追求卓越的Baihai IDP
2022-09-28 10:37:20

嵌入式中的人工神經(jīng)網(wǎng)絡(luò)的相關(guān)資料分享

人工神經(jīng)網(wǎng)絡(luò)在AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個(gè)挑戰(zhàn)是如何在嵌入式設(shè)備上實(shí)現(xiàn)它,同時(shí)優(yōu)化性能和功率效率。 使用云計(jì)算并不總是一個(gè)選項(xiàng),尤其是當(dāng)
2021-11-09 08:06:27

應(yīng)用人工神經(jīng)網(wǎng)絡(luò)模擬污水生物處理

應(yīng)用人工神經(jīng)網(wǎng)絡(luò)模擬污水生物處理(1.浙江工業(yè)大學(xué)建筑工程學(xué)院, 杭州 310014; 2.鎮(zhèn)江水工業(yè)公司排水管理處,鎮(zhèn)江 212003)摘要:針對(duì)復(fù)雜的非線性污水生物處理過程,開發(fā)了徑向基函數(shù)的人
2009-08-08 09:56:00

怎么解決人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題

本文提出了一個(gè)基于FPGA 的信息處理的實(shí)例:一個(gè)簡(jiǎn)單的人工神經(jīng)網(wǎng)絡(luò)應(yīng)用Verilog 語言描述,該數(shù)據(jù)流采用模塊化的程序設(shè)計(jì),并考慮了模塊間數(shù)據(jù)傳輸信號(hào)同 步的問題,有效地解決了人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題。
2021-05-06 07:22:07

怎么設(shè)計(jì)ARM神經(jīng)網(wǎng)絡(luò)處理器通信方案?

FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20

求利用LABVIEW 實(shí)現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序

誰有利用LABVIEW 實(shí)現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序?。ㄎ矣玫陌姹臼?.6的 )
2012-11-26 14:54:59

求助基于labview的神經(jīng)網(wǎng)絡(luò)pid控制

小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問這個(gè)控制方法可以嗎?有誰會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16

求助大神關(guān)于神經(jīng)網(wǎng)絡(luò)的問題

求助大神 小的現(xiàn)在有個(gè)難題: 一組車重實(shí)時(shí)數(shù)據(jù) 對(duì)應(yīng)一個(gè)車重的最終數(shù)值(一個(gè)一維數(shù)組輸入對(duì)應(yīng)輸出一個(gè)數(shù)值) 這其中可能經(jīng)過均值、方差、去掉N個(gè)最大值、、、等等的計(jì)算 我的目的就是弄清楚這個(gè)中間計(jì)算過程 最近實(shí)在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請(qǐng)教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44

求基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)過程

求高手,基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)過程,最好有程序哈,謝謝!!
2012-12-10 14:55:50

用FPGA去實(shí)現(xiàn)大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)

和中間結(jié)果需要存儲(chǔ)在外部存儲(chǔ)中。并且數(shù)據(jù)迭代會(huì)更加復(fù)雜。設(shè)計(jì)周期長(zhǎng),AI相關(guān)領(lǐng)域迭代速度快,綜上以上幾點(diǎn),可以很容易給你們指引一條道路?! ∧壳爸髁鞯慕鉀Q方案就是使用通用或?qū)S?b class="flag-6" style="color: red">處理器來做控制工作
2022-10-24 16:10:50

簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

最簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)
2019-09-11 11:57:36

脈沖耦合神經(jīng)網(wǎng)絡(luò)在FPGA上的實(shí)現(xiàn)誰會(huì)?

脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)在FPGA上的實(shí)現(xiàn),實(shí)現(xiàn)數(shù)據(jù)分類功能,有報(bào)酬。QQ470345140.
2013-08-25 09:57:14

請(qǐng)問一下fpga加速神經(jīng)網(wǎng)絡(luò)為什么要用arm核呢

請(qǐng)問一下fpga加速神經(jīng)網(wǎng)絡(luò)為什么要用arm核呢?用其他的不行嗎
2022-07-25 14:37:58

針對(duì)Arm嵌入式設(shè)備優(yōu)化的神經(jīng)網(wǎng)絡(luò)推理引擎

專門針對(duì)Arm嵌入式設(shè)備優(yōu)化的神經(jīng)網(wǎng)絡(luò)推理引擎Tengine + HCL,不同人群的量身定制
2021-01-15 08:00:42

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器 Copy東京理工大學(xué)的研究人員開發(fā)了一種名為“ Hiddenite”的新型加速芯片,該芯片可以在計(jì)算稀疏“隱藏神經(jīng)網(wǎng)絡(luò)”時(shí)達(dá)到最高的精度
2022-03-17 19:15:13

基于ARM神經(jīng)網(wǎng)絡(luò)處理器的存儲(chǔ)體的數(shù)據(jù)交換的通信方案

首先介紹了人工神經(jīng)網(wǎng)絡(luò)的模型和算法以及FPGA的實(shí)現(xiàn),并通過對(duì)網(wǎng)絡(luò)結(jié)構(gòu)的分析設(shè)計(jì)了FPGA端的數(shù)據(jù)存儲(chǔ)系統(tǒng)。然后分析了ARM端和FPGA端各自的功能,在此基礎(chǔ)上把兩者結(jié)合在一起,設(shè)計(jì)了一種利用ARM的ZDMA方式相互通信方案。
2017-11-17 14:56:251457

一種基于FPGA的神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)方案詳解

人工神經(jīng)網(wǎng)絡(luò)在智能控制、模式識(shí)別、圖像處理等領(lǐng)域中應(yīng)用廣泛。在進(jìn)行神經(jīng)網(wǎng)絡(luò)的應(yīng)用研究時(shí),人們可以將神經(jīng)網(wǎng)絡(luò)模型或算法在通用的計(jì)算機(jī)上軟件編程實(shí)現(xiàn),但很多時(shí)間浪費(fèi)在分析指令、讀出寫入數(shù)據(jù)等,其實(shí)現(xiàn)效率
2018-09-30 16:14:5513397

英特爾Nervana神經(jīng)網(wǎng)絡(luò)訓(xùn)練處理器正式發(fā)布

英特爾今天在北京發(fā)布了他們最新推出的英特爾Nervana神經(jīng)網(wǎng)絡(luò)處理器(NNP)和下一代英特爾Movidius Myriad視覺處理單元(VPU)。
2019-11-26 16:54:163552

用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理1

有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:05:34451

用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理2

有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:13377

用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理3

有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:18467

用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理4

有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:21443

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種在神經(jīng)網(wǎng)絡(luò)領(lǐng)域內(nèi)廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。相較于傳統(tǒng)
2023-08-21 16:41:453485

卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361860

已全部加載完成