0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

電源模塊的EMI降低解決方案

電子設計 ? 來源:郭婷 ? 作者:電子設計 ? 2019-03-07 08:59 ? 次閱讀

DC/DC轉(zhuǎn)換器是一種很好的高頻噪聲源。設計人員必須采取謹慎措施,盡量減少并控制轉(zhuǎn)換器附近和周圍的噪聲,以防止其影響其他系統(tǒng)組件或交流電源。我們不希望我們的產(chǎn)品從測試中回來并發(fā)現(xiàn)我們的電磁干擾(EMI)或傳導發(fā)射(CE)檢測失敗。更重要的是,我們不希望這些噪聲源降低我們的產(chǎn)品性能,因此我們需要了解這種噪聲的機制以及如何將其降至最低。

輻射發(fā)射(RE)或電磁干擾(EMI)

許多模塊都具有五面屏蔽,有效地包含相鄰組件的輻射發(fā)射。通常,面向印刷電路板(PC)的第六側(cè)未被屏蔽,但建議將接地平面放置在轉(zhuǎn)換器下方并連接到殼體上。這種方法是控制轉(zhuǎn)換器發(fā)出的EMI的最佳方法。例如,Power-One電源采用金屬屏蔽結(jié)構(gòu),公司為其CPA和CPS系列板外模塊化電源解決方案提供CE和RE數(shù)據(jù)表曲線。

基極電鍍轉(zhuǎn)換器可提供更好的近場B場輻射保護。在大多數(shù)頻率下,基座電鍍轉(zhuǎn)換器比開放式框架設計安靜約10 dB/μM。

模塊化電源產(chǎn)品通常設計用于通過ComitéInternationaleSpécialdesPerturbations Radioelectrotechnique(國際無線電干擾特別委員會,或CISPR)和聯(lián)邦通信委員會(FCC)標準。 CISPR標準通常僅涉及電磁兼容性(EMC)發(fā)射測試方法和限制。

最小化EMI的基本指導原則如下:

保持電流回路較小(圖1)。導體通過感應和輻射耦合能量的能力通過較小的環(huán)路降低,環(huán)路起到天線的作用。

對于成對的銅印刷電路板(PC),使用寬(低阻抗)

在干擾源處定位濾波器,基本上盡可能靠近電源模塊

應選擇濾波器元件值,并考慮到所需的衰減頻率范圍。例如,電容器在某個頻率下是自諧振的,超過該頻率它們看起來是電感性的。使旁路電容引線盡可能短。

在考慮到噪聲源與潛在易受影響電路的接近程度時,在PC板上找到元件。

電源模塊的EMI降低解決方案

圖1:避免大環(huán)路將最大限度地降低EMI或RE。 (由Lineage Power提供)

對于所有應用程序,沒有一種完美的EMI策略,但事先的一些基本思想可以使任務變得更加容易。第一步是確保組件的位置最小化噪音。例如,去耦電容應盡可能靠近轉(zhuǎn)換器,尤其是X和Y電容。使用接地層來最小化輻射耦合,最小化敏感節(jié)點的橫截面積,并最小化可能輻射的高電流節(jié)點的橫截面積,例如來自共模電容器的橫截面積。

EMI組件的位置至關重要;避免將轉(zhuǎn)換器放在靠近濾波器的位置,以避免噪聲耦合回濾波器。請記住,您不僅要過濾電源,還要過濾轉(zhuǎn)換器正在供電的所有電路。今天的大多數(shù)通信機柜在卡級別使用盡可能多的本地過濾,然后在電源輸入模塊上使用另一個過濾器,供電將進入您的機柜。

CUI Inc.擁有其V-Infinity電源模塊系列和該系列的優(yōu)秀白皮書,用于電源模塊中的EMC考慮。

表面貼裝模塊與通孔模塊的比較

表面貼裝器件(SMD)在處理射頻能量方面比含鉛器件更好,因為它可以減少電感和更緊密的元件放置。由于SMD的物理尺寸減小,后者是可能的。這對于雙層電路板設計至關重要,因為它需要噪聲控制元件的最大效率。通常,引線電容器在約80MHz時變?yōu)樽灾C振(比電容變得更具電感性)。由于需要控制80 MHz以上的噪聲,因此如果僅使用通孔元件執(zhí)行設計,則應該提出嚴肅的問題。

傳導發(fā)射(CE)

DC/DC轉(zhuǎn)換器中的快速電壓和電流變化將導致模塊化設備輸入端的傳導噪聲。邏輯負載的快速上升時間和下降時間將產(chǎn)生傳導噪聲,這些噪聲也會反射回輸入。傳導噪聲會產(chǎn)生電場和磁場,如果沒有正確配置電路,會產(chǎn)生噪聲。通常良好的布局和濾波器設計將最小化這種影響。

為了最好地理解CE的來源,發(fā)射被分類為差分(對稱)或共同(非對稱)模式噪聲。共模(CM)和差模(DM)電壓和電流的定義如圖2所示。

電源模塊的EMI降低解決方案

圖2:差模和共模電流和電壓的定義。

EMI降低解決方案

一個答案是使用預先測試的解決方案,例如凌力爾特公司的μModule穩(wěn)壓器,旨在通過在源頭衰減傳導和輻射能量,讓設計人員高枕無憂: DC/DC穩(wěn)壓器電路。

最小化CE的另一種方法是使模塊的電壓路徑相鄰并相互平行(對稱性始終是CE和EMI降低的良好形式),其下方有一個接地層。多條路徑也可以堆疊在一起。這類似于以雙絞線配置運行兩條線,最適合消除共模噪聲。避免電路路徑在大環(huán)路中運行,這將充當天線。保持靠近電源導線,這將最大限度地減少環(huán)路面積并保持RE下降。

也可能需要外部輸入和/或輸出濾波器。如果是這樣,那么必須非常小心以避免濾波器的雜散電感和/或電容產(chǎn)生不良影響,這可能導致整個車載電源系統(tǒng)的不穩(wěn)定或性能下降。1

設計師必須保持注意輸入濾波器和電源模塊之間的阻抗不匹配(圖3)。

電源模塊的EMI降低解決方案

圖3:正確的阻抗匹配可防止不良影響。 (由Lineage Power提供)

DC/DC電源模塊的輸入是低頻時的恒定功率。隨著電壓降低,電流增加。這將在輸入源處呈現(xiàn)負阻抗。當輸入濾波器的阻抗和功率模塊阻抗的組合變?yōu)樨摃r,轉(zhuǎn)換器將振蕩,從而導致不匹配。防止這種情況的一種方法是確保濾波器的輸出阻抗遠小于所有頻率下功率模塊的輸入阻抗。圖4顯示了輸入濾波器輸出和功率模塊輸入的阻抗與頻率的關系圖。

電源模塊的EMI降低解決方案

圖4:輸入濾波器/電源模塊的穩(wěn)定性圖。 (由Lineage Power提供)

輸入濾波器的輸出顯示在下圖中。在每次坡度變化時,記錄有助于該變化的組分。濾波器的諧振頻率顯示為ωf。其峰值與濾波器阻尼比成正比。因此,如果其最大阻抗接近功率模塊阻抗,則欠阻尼濾波器最有可能引起振蕩。

上面的曲線繪制了功率模塊的輸入阻抗。轉(zhuǎn)換器輸出濾波器的諧振頻率顯示為ωo。任何外部輸出濾波器都會改變這一點。

穩(wěn)健而穩(wěn)定的設計組合將是設計濾波器,使其峰值輸出阻抗(濾波器的諧振頻率)比功率模塊輸入阻抗(功率的諧振頻率)下降低十倍或更多模塊的輸出濾波器與任何外部輸出濾波器相結(jié)合)。設計濾波器的最小阻尼系數(shù)為0.707也是明智的。

X和Y電容器

X電容器連接在線路相位之間,可有效抵抗對稱干擾(差分模式)。

Y電容器是EMI電容器,它們從輸入電源饋送到機殼接地,可有效抵抗非對稱干擾(共模)。有時它們也從每個轉(zhuǎn)換器的電源輸出端子連接到底盤接地。典型的濾波器設計使用2,700 pF Y電容。額定電壓取決于-48 Vdc電源的絕緣和隔離安全等級。如果您不確定這些屬性,請使用額定電壓為2,000 V的電容器。如果-48 V是加強絕緣方案,則100 V額定電容器就足夠了。 X和Y電容的EMI抑制示例如圖5所示。

電源模塊的EMI降低解決方案

圖5:使用X和Y電容器的EMI共模和差模抑制示例。 (由愛普科斯(EPCOS Inc.)提供)

愛普科斯(EPCOS)擁有一系列EMI抑制電容器,采用該公司的B3293X系列。

同步

同步電源模塊的好處是可以消除兩個或多個設備在彼此接近的頻率下工作所產(chǎn)生的拍頻。如果我們能夠以相同的頻率運行多個電源模塊,則產(chǎn)生的任何EMC輻射都將具有相似的頻譜密度,從而更容易濾除該特定頻率。當然,電源模塊必須有一個SYNCH引腳才能應用外部頻率。某些模塊可以訪問內(nèi)部振蕩器,然后該振蕩器可用于驅(qū)動主/從配置中的其他模塊的SYNCH引腳。

物理定位

有時,將電源模塊和/或其他磁性元件旋轉(zhuǎn)90°(例如變壓器和電感器)可以改善電源設計的EMI性能。即使是微妙的設計變化也會導致電源的EMI高于必要的EMI。設計人員需要了解噪聲源自何處,以及如何將噪聲降低到可接受的特定系統(tǒng)。本文提供了一些經(jīng)過驗證的技術(shù),可以在麻煩的EMI中實現(xiàn)一階改進,這對設計人員來說永遠是一個挑戰(zhàn)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電容器
    +關注

    關注

    64

    文章

    6227

    瀏覽量

    99758
  • emi
    emi
    +關注

    關注

    53

    文章

    3591

    瀏覽量

    127759
  • 電源模塊
    +關注

    關注

    32

    文章

    1707

    瀏覽量

    92898
收藏 人收藏

    評論

    相關推薦

    電源模塊自動化測試一站式解決方案都包含哪些模塊?

    電源模塊自動化測試解決方案會為企業(yè)提供一體化硬件和自動化測試系統(tǒng)
    的頭像 發(fā)表于 09-10 18:20 ?659次閱讀
    <b class='flag-5'>電源模塊</b>自動化測試一站式<b class='flag-5'>解決方案</b>都包含哪些<b class='flag-5'>模塊</b>?

    借助電源模塊簡化低EMI設計

    電子發(fā)燒友網(wǎng)站提供《借助電源模塊簡化低EMI設計.pdf》資料免費下載
    發(fā)表于 08-26 11:42 ?0次下載
    借助<b class='flag-5'>電源模塊</b>簡化低<b class='flag-5'>EMI</b>設計

    德州儀器推出電源模塊全新磁性封裝技術(shù),將電源解決方案尺寸縮小一半

    電源模塊可將電磁干擾 (EMI) 輻射降低 8dB,同時將效率提升高達 2%。 ? 中國上海(2024 年 7 月 31 日)– 德州儀器 (TI)(納斯達克股票代碼:TXN)推出六款新型
    的頭像 發(fā)表于 07-31 15:18 ?985次閱讀
    德州儀器推出<b class='flag-5'>電源模塊</b>全新磁性封裝技術(shù),將<b class='flag-5'>電源</b><b class='flag-5'>解決方案</b>尺寸縮小一半

    數(shù)字電源模塊用在什么地方

    數(shù)字電源模塊是一種高度集成化的電源解決方案,廣泛應用于各種電子設備和系統(tǒng)中。 數(shù)字電源模塊的應用領域 通信設備 數(shù)字電源模塊在通信設備中的應
    的頭像 發(fā)表于 07-08 11:29 ?710次閱讀

    探討DCAC電源模塊為綠色能源應用提供可靠的轉(zhuǎn)換解決方案

    BOSHIDA 探討DC/AC電源模塊為綠色能源應用提供可靠的轉(zhuǎn)換解決方案 DC/AC電源模塊是一種能夠?qū)⒅绷?b class='flag-5'>電源轉(zhuǎn)換為交流電源的裝置。隨著
    的頭像 發(fā)表于 07-01 16:21 ?336次閱讀
    探討DCAC<b class='flag-5'>電源模塊</b>為綠色能源應用提供可靠的轉(zhuǎn)換<b class='flag-5'>解決方案</b>

    DCAC電源模塊:效率與可靠性兼?zhèn)涞哪茉崔D(zhuǎn)換解決方案

    BOSHIDA DC/AC電源模塊:效率與可靠性兼?zhèn)涞哪茉崔D(zhuǎn)換解決方案 隨著科技的迅速發(fā)展和人工智能技術(shù)的逐漸成熟,各種電子設備的需求也日益增加。然而,這些設備往往需要不同的電壓和電流來正常工作,而
    的頭像 發(fā)表于 06-27 13:12 ?584次閱讀
    DCAC<b class='flag-5'>電源模塊</b>:效率與可靠性兼?zhèn)涞哪茉崔D(zhuǎn)換<b class='flag-5'>解決方案</b>

    常用的電源模塊有哪些

    常用的電源模塊有哪些 電源模塊是電子設備中不可或缺的組成部分,它們將輸入的電壓轉(zhuǎn)換為設備所需的電壓,以保證設備的正常運行。本文將詳細介紹常用的電源模塊類型、特點以及應用場景。 一、線性電源模塊
    的頭像 發(fā)表于 06-10 16:28 ?1887次閱讀

    AC/DC電源模塊:簡化電路設計的便捷解決方案

    BOSHIDA ?AC/DC電源模塊:簡化電路設計的便捷解決方案 AC/DC電源模塊是一種常用的電力轉(zhuǎn)換裝置,用于將交流電源轉(zhuǎn)換為直流電源,
    的頭像 發(fā)表于 06-07 13:09 ?538次閱讀
    AC/DC<b class='flag-5'>電源模塊</b>:簡化電路設計的便捷<b class='flag-5'>解決方案</b>

    AC/DC電源模塊:高質(zhì)量的電力轉(zhuǎn)換解決方案

    BOSHIDA ?AC/DC電源模塊:提供高質(zhì)量的電力轉(zhuǎn)換解決方案 AC/DC電源模塊是一種電力轉(zhuǎn)換器件,可以將交流電轉(zhuǎn)換為直流電。它通常用于各種電子設備和系統(tǒng)中,提供高質(zhì)量的電力轉(zhuǎn)換解決方案
    的頭像 發(fā)表于 05-27 13:42 ?445次閱讀
    AC/DC<b class='flag-5'>電源模塊</b>:高質(zhì)量的電力轉(zhuǎn)換<b class='flag-5'>解決方案</b>

    DC電源模塊與其他電源模塊的區(qū)別與優(yōu)勢

    BOSHIDA DC電源模塊與其他電源模塊的區(qū)別與優(yōu)勢 在現(xiàn)代電子設備中,電源模塊是不可或缺的組成部分。電源模塊的作用是將外部電源的電能轉(zhuǎn)換
    的頭像 發(fā)表于 03-27 13:07 ?814次閱讀
    DC<b class='flag-5'>電源模塊</b>與其他<b class='flag-5'>電源模塊</b>的區(qū)別與優(yōu)勢

    電源模塊波紋問題困擾你?采取科學措施,降低電源模塊波紋!

    電源模塊波紋
    穩(wěn)控自動化
    發(fā)布于 :2024年03月14日 08:58:59

    電源模塊的使用方法

    電源模塊主要用于為電子設備和電路提供電源供電,以下是一般的電源模塊使用方法: 確定電源模塊的輸入和輸出電壓要求:電源模塊一般有輸入和輸出端子
    的頭像 發(fā)表于 03-05 09:06 ?1672次閱讀

    提高效率的DC電源模塊設計技巧

    的開關電源作為電源模塊的核心。開關電源通常比線性電源具有更高的轉(zhuǎn)換效率,可以將輸入電壓轉(zhuǎn)換為所需的輸出電壓而減少能量損耗。 提高效率的DC電源模塊
    的頭像 發(fā)表于 02-26 14:27 ?563次閱讀
    提高效率的DC<b class='flag-5'>電源模塊</b>設計技巧

    DC電源模塊在醫(yī)療設備中的應用挑戰(zhàn)與解決方案

    BOSHIDA DC電源模塊在醫(yī)療設備中的應用挑戰(zhàn)與解決方案 醫(yī)療設備對電源模塊的要求相對較高,因此在應用中可能會面臨一些挑戰(zhàn)。以下是一些可能的挑戰(zhàn)以及解決方案: DC
    的頭像 發(fā)表于 01-24 14:26 ?441次閱讀
    DC<b class='flag-5'>電源模塊</b>在醫(yī)療設備中的應用挑戰(zhàn)與<b class='flag-5'>解決方案</b>

    DC電源模塊:提升效率,降低能耗的利器

    BOSHIDA ?DC電源模塊:提升效率,降低能耗的利器 DC電源模塊是一種將交流電轉(zhuǎn)換為直流電的設備,廣泛應用于各種電子設備中。它的主要作用是提供穩(wěn)定的直流電源,以供電子設備正常運行
    的頭像 發(fā)表于 01-23 14:13 ?435次閱讀
    DC<b class='flag-5'>電源模塊</b>:提升效率,<b class='flag-5'>降低</b>能耗的利器