0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

騰訊提出器官神經(jīng)網(wǎng)絡(luò) 全自動輔助頭頸放療規(guī)劃

mK5P_AItists ? 來源:未知 ? 作者:胡薇 ? 2018-11-19 16:41 ? 次閱讀

騰訊醫(yī)療AI實驗室又有新研究。這次跟美國加州大學(xué)合作,在國際權(quán)威期刊《Medical Physics》發(fā)表最新研究成果:《器官神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)用于快速和全自動整體頭頸危及器官靶區(qū)勾畫》。

該研究成果能讓AI在頭頸等重要器官的放射治療規(guī)劃中,發(fā)揮精準規(guī)劃作用,最大限度將放射劑量集中在靶區(qū)內(nèi),而周圍正常組織或器官少受或免受不必要的傷害。

比起單純依靠人類醫(yī)生,可以提升診療規(guī)劃效率,降低勾勒時長,還能提升勾畫準確率。

可以說是患者福音,醫(yī)生益友。

基于深度學(xué)習(xí)的放療靶區(qū)自動勾畫

這個研究是這樣的:

每年有超過六十萬人被診斷患有頭頸部癌癥,其中許多人選擇接受放射治療。

但頭頸部重要器官比較集中,解剖關(guān)系復(fù)雜,如果在治療前未仔細隔離,放療時周圍組織可能會嚴重受損。

在頭頸癌放療過程中,醫(yī)生根據(jù)患者CT圖像手動描繪放療靶區(qū)和危及器官(Organ at Risk,OaR),目的是最大限度將放射劑量集中在靶區(qū)內(nèi),而周圍正常組織或器官少受或免受不必要的傷害。

然而勾勒過程非常耗時,降低診療效率的同時,更是耽誤了患者的治療時間。

若能讓AI幫助分割過程,輔助放療規(guī)劃,肯定能協(xié)助醫(yī)生、幫助患者。

于是圍繞該問題,騰訊醫(yī)療AI實驗室和加州大學(xué)提出一種深度學(xué)習(xí)模型——器官神經(jīng)網(wǎng)絡(luò)(AnatomyNet)。

該模型可以快速地對整張CT的所有切片進行全自動化器官分割(Segmentation),在小于1秒鐘的時間內(nèi)完成一整幅頭頸CT的危及器官勾畫,大幅度提升放療靶區(qū)勾畫效率。

器官神經(jīng)網(wǎng)絡(luò)的輸入是頭頸CT圖像的所有切片。該神經(jīng)網(wǎng)絡(luò)可以一次性產(chǎn)生所有危及器官的預(yù)測結(jié)果。

具體構(gòu)建上,器官神經(jīng)網(wǎng)絡(luò)基于常用的三維U網(wǎng)絡(luò)(U-net)架構(gòu),但是騰訊AI實驗室在三個重要的方面對其進行了擴展:

1)一種新的在整幅CT圖像上進行自動分割的編碼方式,而不是在局部圖像塊上,或者一部分CT圖像切片上分割;

2)在編碼層中,加入三維Squeeze-and-Excitation殘差結(jié)構(gòu)來進行更好的特征表示學(xué)習(xí);

3)一種新的結(jié)合Dice損失和Focal損失的損失函數(shù),用來更好地訓(xùn)練該神經(jīng)網(wǎng)絡(luò)。在深度學(xué)習(xí)的器官分割中,使用這些技巧解決兩個主要的挑戰(zhàn):a)小器官的分割(比如,視神經(jīng)和視交叉)。這些小器官僅僅只有幾個切片。b)對于一些器官結(jié)構(gòu),數(shù)據(jù)標注不一致以及標注缺失給訓(xùn)練造成一些問題。

△器官神經(jīng)網(wǎng)絡(luò)危及器官分割結(jié)果

如上圖所示,其中綠色為醫(yī)生標注,紅色為器官神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果,黃色表示標注和預(yù)測重合,結(jié)果顯示高度一致。

從下面的動態(tài)圖上,可以更清晰看到器官神經(jīng)網(wǎng)絡(luò)預(yù)測和醫(yī)生標注的連續(xù)過程,其中左邊顯示的是醫(yī)生標注,右邊顯示的是器官神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果。

從結(jié)果上說:和之前MICCAI競賽中最好的方法相比,器官神經(jīng)網(wǎng)絡(luò)平均提升了3.3%的Dice指標。

器官神經(jīng)網(wǎng)絡(luò)僅僅使用0.12秒就可以完全完成一整幅CT圖像(178×512×512)的分割。

該速度極大地縮短了之前方法所用的時間(20分鐘以上)。

除此之外,該模型可以處理一整幅包含所有切片的CT圖像,以及一次性勾畫所有的危及器官,不需要很復(fù)雜的預(yù)處理以及后處理。

這證明,深度學(xué)習(xí)可以提升器官分割準確率,簡化自動分割器官的流程。

國際權(quán)威期刊刊發(fā)

騰訊醫(yī)療AI實驗室和加州大學(xué)的聯(lián)合研究成果,首刊于《Medical Physics》,這是是美國醫(yī)學(xué)物理學(xué)家學(xué)會(The American Association of Physicists in Medicine,AAPM)的官方期刊。

該研究成果在期刊上發(fā)表后,目前已經(jīng)被多個機構(gòu)引用。

美國德克薩斯大學(xué)MD安德森癌癥中心(MD Anderson Cancer Center)對騰訊醫(yī)療AI實驗室的“器官神經(jīng)網(wǎng)絡(luò)”表示關(guān)注,并把該研究成果作為中心一項大規(guī)模研究的重要部分。

該中心在美國乃至全球皆享譽盛名,多次被評為美國最佳癌癥研究機構(gòu),也是公認的全球最好的腫瘤醫(yī)院。

此外,論文一經(jīng)發(fā)布,很快被加拿大瑞爾森大學(xué)、中國中科院等多家機構(gòu)學(xué)者在其研究報告中被提及和引用,作為最新的研究突破獲得國內(nèi)外認可。

一旦更多研究機構(gòu)和人力參與其中,規(guī)模化落地速度可能也會加快,實乃人類福音。

騰訊醫(yī)療AI實驗室

最后,簡單介紹下騰訊醫(yī)療AI實驗室。

這是騰訊專為醫(yī)療領(lǐng)域打造的AI實驗室,創(chuàng)建于2017年年底,目前在硅谷、北京、深圳設(shè)立了三個分支。

其作為騰訊醫(yī)療健康領(lǐng)域眾重要技術(shù)驅(qū)動,騰訊AI實驗室主要以學(xué)術(shù)研究層面發(fā)力,希望在AI醫(yī)學(xué)前沿領(lǐng)域取得突破。

實驗室的主要研究方向是基于自然語言理解、醫(yī)學(xué)知識圖譜、深度學(xué)習(xí)、醫(yī)療影像、貝葉斯網(wǎng)絡(luò)、多模態(tài)分析等基礎(chǔ)技術(shù)構(gòu)建醫(yī)學(xué)知識引擎、醫(yī)療推理引擎、臨床輔助診斷引擎、問診對話引擎等智能平臺。

更早之前,騰訊醫(yī)療AI實驗室已推出帕金森病運動功能智能評估系統(tǒng),其他主要產(chǎn)品還包括臨床輔助決策支持系統(tǒng),面向腦卒中、急性冠脈綜合癥等高危易誤診疾病提供臨床輔助決策支持,以及心電圖智能分析軟件,利用AI技術(shù)實現(xiàn)心電圖監(jiān)測結(jié)果的自動判讀和預(yù)警等。

今年7月,騰訊醫(yī)療AI實驗室還有3篇論文分別被KDD 2018、SIGIR 2018、COLING 2018三個國際頂尖學(xué)術(shù)會議收錄,論文的主要研究方向為醫(yī)療知識圖譜中實體關(guān)系的發(fā)現(xiàn)和應(yīng)用。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4773

    瀏覽量

    100880
  • 醫(yī)療
    +關(guān)注

    關(guān)注

    8

    文章

    1824

    瀏覽量

    58812
  • 騰訊
    +關(guān)注

    關(guān)注

    7

    文章

    1656

    瀏覽量

    49479

原文標題:騰訊醫(yī)療AI新突破:提出器官神經(jīng)網(wǎng)絡(luò),全自動輔助頭頸放療規(guī)劃 | 論文

文章出處:【微信號:AItists,微信公眾號:人工智能學(xué)家】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?544次閱讀

    神經(jīng)網(wǎng)絡(luò)辨識模型具有什么特點

    ,可以對未知數(shù)據(jù)進行預(yù)測,具有很好的泛化能力。 自學(xué)習(xí)能力 :神經(jīng)網(wǎng)絡(luò)通過反向傳播算法等優(yōu)化算法,可以自動調(diào)整網(wǎng)絡(luò)參數(shù),實現(xiàn)自學(xué)習(xí)。 并行處理能力 :神經(jīng)網(wǎng)絡(luò)的計算可以并行進行,提高了
    的頭像 發(fā)表于 07-11 11:12 ?479次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1610次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個方面,詳細闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?1163次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?591次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?808次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1346次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時,我們需要從多個維度進行深入分析。這些維度包括
    的頭像 發(fā)表于 07-04 13:20 ?943次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和反向傳播神經(jīng)網(wǎng)絡(luò)區(qū)別在哪

    神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都有廣泛的應(yīng)用,如語音識別、圖像識別、自然語言處理等。然而,BP神經(jīng)網(wǎng)絡(luò)也存在一些問題,如容易陷入局部最優(yōu)解、訓(xùn)練時間長、對初始權(quán)重敏感等。為了解決這些問題,研究者們提出了一些改進的BP
    的頭像 發(fā)表于 07-04 09:51 ?459次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks, RNN)是兩種極其重要
    的頭像 發(fā)表于 07-03 16:12 ?3452次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都有廣泛的應(yīng)用,如語音識別、圖像識別、自然語言處理等。然而,BP神經(jīng)網(wǎng)絡(luò)也存在一些問題,如容易陷入局部最優(yōu)解、訓(xùn)練時間長、對初始權(quán)重敏感等。為了解決這些問題,研究者們提出了一些改進的BP
    的頭像 發(fā)表于 07-03 11:00 ?828次閱讀

    bp神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種常見的前饋神經(jīng)網(wǎng)絡(luò),它使用反向傳播算法來訓(xùn)練網(wǎng)絡(luò)。雖然BP神經(jīng)網(wǎng)絡(luò)在某些方面與深度
    的頭像 發(fā)表于 07-03 10:14 ?872次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò),它們在
    的頭像 發(fā)表于 07-03 10:12 ?1240次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4308次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    神經(jīng)網(wǎng)絡(luò)架構(gòu)是機器學(xué)習(xí)領(lǐng)域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡(luò)的運作方式,通過復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)實現(xiàn)信息的處理、存儲和傳遞。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,各種神經(jīng)網(wǎng)絡(luò)架構(gòu)被
    的頭像 發(fā)表于 07-01 14:16 ?739次閱讀