0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

應(yīng)對傳統(tǒng)摩爾定律微縮挑戰(zhàn)需要芯片布線和集成的新方法

jf_pJlTbmA9 ? 來源: Kevin Moraes ? 作者: Kevin Moraes ? 2023-12-05 15:32 ? 次閱讀

作者:應(yīng)用材料公司 Kevin Moraes

從計算機行業(yè)的早期開始,芯片設(shè)計人員就對晶體管數(shù)量的需求永無止境。英特爾于1971年推出了具有2,300個晶體管的4004微處理器,激發(fā)了微處理器革命;到了今天,主流CPU已有數(shù)百億的晶體管。

在過去多年的發(fā)展中,技術(shù)的變革在于——如何將更高的晶體管預(yù)算轉(zhuǎn)化為更好的芯片和系統(tǒng)。在 2000 年代初期的丹納德微縮時代,縮小的晶體管推動了芯片功率(Power)、性能(Performance)和面積成本(Area-cost)即PPAC的同步改進。設(shè)計人員可以提高單核CPU的運行速度,以加速現(xiàn)有軟件應(yīng)用程序的性能,同時保持合理的功耗和熱量。當(dāng)無法在不產(chǎn)生過多熱量的情況下將單核芯片推向更高速度時,丹納德微縮就結(jié)束了。而導(dǎo)致的結(jié)果就是——功率(下圖中的橙色線)和頻率(下圖中的綠色線)改進也都停止了。

新的架構(gòu)

wKgZomVdjiuAdC2cAAFqVwnhCsQ980.png

如上圖所示,設(shè)計人員使用越來越多的晶體管來添加CPU內(nèi)核(上圖中黑色線)以及并行化的軟件應(yīng)用程序,以使計算工作負載能夠跨越更多的內(nèi)核劃分。最終,并行性達到了阿姆達爾微縮的極限(上圖藍色線),業(yè)界使用越來越多的晶體管來整合GPU和TPU。這些GPU和TPU繼續(xù)隨著核心數(shù)量的增加而擴展,從而加速了3D圖形和機器學(xué)習(xí)算法等工作負載。今天,我們正處于一個以新架構(gòu)為特征的時代——運算性能取決于內(nèi)核和加速器,并由增加的晶體管預(yù)算和更大的芯片尺寸來驅(qū)動。但是,正如我將在本博客后面解釋的那樣,新的限制正在步步逼近。

EUV來了,現(xiàn)在怎么辦?

EUV光刻技術(shù)已經(jīng)到來,這使得在芯片上打印更小的晶體管特征和布線成為可能。但這些從業(yè)者也面臨新的挑戰(zhàn)。在國際電子器件會議(IEDM 2019)期間名為“邏輯的未來:EUV來了,現(xiàn)在怎么辦?”的圓桌論壇上,行業(yè)專家提出這種技術(shù)簡化了圖形化,但這并不是靈丹妙藥。我列出了參會人員所討論到的幾個挑戰(zhàn),他們提出來的解決方案如今正在半導(dǎo)體行業(yè)的新路線圖中逐步實現(xiàn)。

首先,論壇提出了一個對某些人來說違反直覺的挑戰(zhàn):在芯片制造中,越小不一定越好,因為在同一空間中封裝的晶體管觸點和互連線越多,芯片的速度就越慢,能效就越低。

其次,該論壇上預(yù)測了背面配電網(wǎng)絡(luò)的到來——這是一種設(shè)計技術(shù)協(xié)同優(yōu)化(DTCO)技術(shù),目前已出現(xiàn)在領(lǐng)先芯片制造商的路線圖中。它允許邏輯密度增加高達30%,而無需對光刻進行任何更改。

我們現(xiàn)在正處于摩爾定律的第四次演變中,芯片制造商可以通過設(shè)計在各種節(jié)點上制造的芯片“然后使用先進的封裝將它們縫合在一起”來降低成本。事實上,早在57年前,摩爾博士就已經(jīng)預(yù)言了正在興起的異構(gòu)設(shè)計和集成時代。

應(yīng)用材料公司已在5月26日的“芯片布線和集成的新方法”大師課上,進一步探討了上述三個話題,同時我們也展示了材料工程和異構(gòu)集成方面的創(chuàng)新,從而解決EUV微縮出現(xiàn)的電阻問題;在不改變光刻技術(shù)的情況下,實現(xiàn)微縮邏輯芯片的新方法;以及為設(shè)計人員提供幾乎無限的晶體管預(yù)算。以下是本次大師課的內(nèi)容概述。

提高功率和性能所需的布線創(chuàng)新

EUV的出現(xiàn)使制造商能夠通過單次曝光打印25納米間距內(nèi)的特征,從而簡化了圖形化。不幸的是,使芯片布線更小并不能使它變得更好。EUV微縮的電阻難題存在于最小的晶體管觸點、通孔和互連中,這就是材料工程需要創(chuàng)新的地方。

wKgaomVdjiyACJDfAATWYUEzIJo750.png

芯片中最小的導(dǎo)線是為晶體管的柵極、源極和漏極供電的觸點。觸點將晶體管連接到周圍的互連線,該互連線由金屬線和通孔組成,允許將電源信號路由到晶體管并貫穿整個芯片。

為了創(chuàng)建布線,我們在介電材料中刻蝕出溝槽,然后使用金屬疊層沉積布線,該金屬疊層通常包括一個阻擋層,可防止金屬與介電材料混合;提升粘附的襯墊層;促進金屬填充的種子層;晶體管觸點使用鎢或鈷等金屬,互連線使用銅。

wKgZomVdji2AXbAuAAGnZvXVsUc759.png

但遺憾的是,阻擋層和襯墊層不能很好地縮小,并且隨著我們使用EUV縮小溝槽圖案,阻擋層和襯墊占用的空間比例增加,而可用于布線的空間減少了。布線越小,電阻越高。

而應(yīng)用材料公司一直致力于開發(fā)新的技術(shù),重塑芯片布線的設(shè)計和制造方式。

使用背面配電網(wǎng)絡(luò)促進邏輯電路微縮

晶體管由電線網(wǎng)絡(luò)供電,電線網(wǎng)絡(luò)將電壓從片外穩(wěn)壓器通過芯片的所有金屬層傳輸?shù)矫總€邏輯單元。在芯片的12個或更多金屬層中的每一層,布線電阻都會降低電源電壓。

wKgZomVdji-AISnzAAI2IlqZuN8295.png

供電網(wǎng)絡(luò)的設(shè)計裕度可以承受穩(wěn)壓器和晶體管之間10%的壓降。使用EUV進一步微縮線路和通孔會導(dǎo)致更高的電阻和布線擁塞。因此,如果不承受高達50%的電壓降低,我們可能無法使用現(xiàn)有的電力傳輸技術(shù)微縮到3納米以下,從而產(chǎn)生嚴(yán)重的晶體管穩(wěn)定性問題。

在每個邏輯單元內(nèi),電源線(也稱為“軌道”)需要具有一定的尺寸,以便為晶體管提供足夠的電壓以進行切換。它們不能像晶體管結(jié)構(gòu)和信號線等其它邏輯單元組件那樣微縮。因此,電源軌現(xiàn)在比其它元件寬約三倍,對邏輯密度微縮構(gòu)成了主要障礙。

wKgaomVdjjCAX8UQAAIaz4YpeCM456.png

其解決方案是一個簡單而美妙的想法:為什么不將所有電源線移到背面呢?從而解決電壓降低問題和邏輯單元微縮難題并顯著地增加價值?

這正是應(yīng)用材料公司基于晶圓正面布線領(lǐng)先技術(shù)上的創(chuàng)新?!氨趁媾潆娋W(wǎng)絡(luò)”將繞過芯片的12個或更多布線層,以將電壓降低多達7倍。從邏輯單元中移除電源軌可以使邏輯密度在相同的光刻間距下最多微縮30%——相當(dāng)于在相同的光刻間距下兩代EUV的微縮。

wKgaomVdjjGAWiHuAAJUsPWXasw730.png

根據(jù)公開信息,芯片制造商正在評估三種不同的背面配電架構(gòu),每種架構(gòu)都有設(shè)計權(quán)衡。一些方法將更容易制造,而其它更復(fù)雜的方法可以最大限度地擴大面積。

異構(gòu)集成在芯片和系統(tǒng)級別推動PPACt

隨著晶體管數(shù)量繼續(xù)呈指數(shù)增長,而二維微縮速度放緩,芯片尺寸正在增加,并推高了“光罩限制”。當(dāng)摩爾定律微縮平穩(wěn)時,設(shè)計人員可以在該空間中放置大量高性能PC和服務(wù)器芯片,或少量極高性能服務(wù)器芯片。今天,服務(wù)器、GPU甚至PC芯片的設(shè)計者想要的晶體管數(shù)量超過了標(biāo)線片區(qū)域所能容納的數(shù)量。這迫使并加速了行業(yè)向使用先進封裝技術(shù)的異構(gòu)設(shè)計和集成的過渡。

wKgZomVdjjOAE6FeAAF8PvhLKqs061.png

從概念上講,如果兩個芯片可以使用它們的后端互連線連接,那么異構(gòu)芯片可以作為一個芯片執(zhí)行,從而克服標(biāo)線限制。事實上,這個概念是存在的:被稱為混合鍵合,它正在領(lǐng)先的芯片制造商的路線圖中出現(xiàn)。一個有前景的例子是將大型SRAM高速緩存芯片與CPU芯片結(jié)合,以同時克服標(biāo)線限制、加快開發(fā)時間、提升性能、減小芯片尺寸、提高良率和降低成本。SRAM緩存可以使用舊的、折舊的制造節(jié)點來構(gòu)建,以進一步降低成本。此外,使用先進的基板和封裝技術(shù),例如硅通孔,設(shè)計人員可以引入其它無法很好擴展的技術(shù),例如DRAM和閃存、模擬、電源和光學(xué)芯片,更接近于邏輯和內(nèi)存緩存,進而改善系統(tǒng)設(shè)計靈活性、成本和上市時間,并提高系統(tǒng)性能、功率、尺寸和成本。

為了加速行業(yè)從系統(tǒng)單芯片時代向系統(tǒng)級封裝時代過渡,應(yīng)用材料公司正致力于開發(fā)混合鍵合的解決方案。

wKgaomVdjjSAE-PFAAOIlSyHWdk466.png

此外,我們在美國時間5月26日舉辦的“芯片布線和集成的新方法”大師課上,還探討了一個相關(guān)的領(lǐng)域——需要更大的半導(dǎo)體級先進基板用于異質(zhì)集成,以此使得設(shè)計人員能夠利用更大的封裝集成更多的芯片并且成本更具競爭力。

wKgZomVdjjaAHyRkAALT6bx87Lc528.png

作者簡介:
wKgaomVdjjeAJ7K8AABxKyDuuco745.jpg
Kevin Moraes是應(yīng)用材料公司半導(dǎo)體事業(yè)部產(chǎn)品和營銷副總裁。他負責(zé)領(lǐng)導(dǎo)團隊制定產(chǎn)品戰(zhàn)略、投資重點、管理產(chǎn)品線等。Moraes博士擁有倫斯勒理工學(xué)院材料科學(xué)與工程博士學(xué)位、加州大學(xué)伯克利分校哈斯商學(xué)院MBA學(xué)位。

關(guān)于應(yīng)用材料公司

應(yīng)用材料公司(納斯達克:AMAT)是材料工程解決方案的領(lǐng)導(dǎo)者,全球幾乎每一個新生產(chǎn)的芯片和先進顯示器的背后都有應(yīng)用材料公司的身影。憑借在規(guī)模生產(chǎn)的條件下可以在原子級層面改變材料的技術(shù),我們助力客戶實現(xiàn)可能。應(yīng)用材料公司堅信,我們的創(chuàng)新實現(xiàn)更美好的未來。欲知詳情,請訪問www.appliedmaterials.com 。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 集成
    +關(guān)注

    關(guān)注

    1

    文章

    176

    瀏覽量

    30237
  • 摩爾定律
    +關(guān)注

    關(guān)注

    4

    文章

    634

    瀏覽量

    79038
  • 晶體管
    +關(guān)注

    關(guān)注

    77

    文章

    9693

    瀏覽量

    138201
收藏 人收藏

    評論

    相關(guān)推薦

    擊碎摩爾定律!英偉達和AMD將一年一款新品,均提及HBM和先進封裝

    電子發(fā)燒友網(wǎng)報道(文/吳子鵬)摩爾定律是由英特爾創(chuàng)始人之一戈登·摩爾提出的經(jīng)驗規(guī)律,描述了集成電路上的晶體管數(shù)量和性能隨時間的增長趨勢。根據(jù)摩爾定律,
    的頭像 發(fā)表于 06-04 00:06 ?4055次閱讀
    擊碎<b class='flag-5'>摩爾定律</b>!英偉達和AMD將一年一款新品,均提及HBM和先進封裝

    Cadence如何應(yīng)對AI芯片設(shè)計挑戰(zhàn)

    生成式 AI 引領(lǐng)智能革命成為產(chǎn)業(yè)升級的核心動力并點燃了“百模大戰(zhàn)”。多樣化的大模型應(yīng)用激增對高性能AI 芯片的需求,促使行業(yè)在摩爾定律放緩的背景下,加速推進 2.5D、3D 及 3.5D 異構(gòu)集成技術(shù)。與此同時,AI 的驅(qū)動作
    的頭像 發(fā)表于 12-14 15:27 ?677次閱讀

    摩爾定律時代,提升集成芯片系統(tǒng)化能力的有效途徑有哪些?

    電子發(fā)燒友網(wǎng)報道(文/吳子鵬)當(dāng)前,終端市場需求呈現(xiàn)多元化、智能化的發(fā)展趨勢,芯片制造則已經(jīng)進入后摩爾定律時代,這就導(dǎo)致先進的工藝制程雖仍然是芯片性能提升的重要手段,但效果已經(jīng)不如從前,先進封裝
    的頭像 發(fā)表于 12-03 00:13 ?2303次閱讀

    異構(gòu)集成封裝類型詳解

    隨著摩爾定律的放緩,半導(dǎo)體行業(yè)越來越多地采用芯片設(shè)計和異構(gòu)集成封裝來繼續(xù)推動性能的提高。這種方法是將大型硅芯片分割成多個較小的
    的頭像 發(fā)表于 11-05 11:00 ?460次閱讀
    異構(gòu)<b class='flag-5'>集成</b>封裝類型詳解

    保護4-20 mA,±20-mA模擬輸入的新方法

    電子發(fā)燒友網(wǎng)站提供《保護4-20 mA,±20-mA模擬輸入的新方法.pdf》資料免費下載
    發(fā)表于 09-24 09:27 ?0次下載
    保護4-20 mA,±20-mA模擬輸入的<b class='flag-5'>新方法</b>

    高算力AI芯片主張“超越摩爾”,Chiplet與先進封裝技術(shù)迎百家爭鳴時代

    越來越差。在這種情況下,超越摩爾逐漸成為打造高算力芯片的主流技術(shù)。 ? 超越摩爾是后摩爾定律時代三大技術(shù)路線之一,強調(diào)利用層堆疊和高速接口技術(shù)將處理、模擬/射頻、光電、能源、傳感等功能
    的頭像 發(fā)表于 09-04 01:16 ?3287次閱讀
    高算力AI<b class='flag-5'>芯片</b>主張“超越<b class='flag-5'>摩爾</b>”,Chiplet與先進封裝技術(shù)迎百家爭鳴時代

    一種無透鏡成像的新方法

    透鏡成像形式,它使用掃描光束收集散射光進行圖像重建,面臨著周期性樣品的挑戰(zhàn)。為了研究微電子或光子元件中的納米級圖案,一種基于無透鏡成像的新方法可以實現(xiàn)近乎完美的高分辨率顯微鏡。這在波長短于紫外線時尤為重要,其成像空間分辨率高于
    的頭像 發(fā)表于 07-19 06:20 ?384次閱讀
    一種無透鏡成像的<b class='flag-5'>新方法</b>

    “自我實現(xiàn)的預(yù)言”摩爾定律,如何繼續(xù)引領(lǐng)創(chuàng)新

    未來的自己制定了一個遠大但切實可行的目標(biāo)一樣, 摩爾定律是半導(dǎo)體行業(yè)的自我實現(xiàn) 。雖然被譽為技術(shù)創(chuàng)新的“黃金法則”,但一些事情尚未廣為人知……. 1.?戈登·摩爾完善過摩爾定律的定義 在1965年的文章中,戈登·
    的頭像 發(fā)表于 07-05 15:02 ?277次閱讀

    封裝技術(shù)會成為摩爾定律的未來嗎?

    你可聽說過摩爾定律?在半導(dǎo)體這一領(lǐng)域,摩爾定律幾乎成了預(yù)測未來的神話。這條定律,最早是由英特爾聯(lián)合創(chuàng)始人戈登·摩爾于1965年提出,簡單地說就是這樣的:
    的頭像 發(fā)表于 04-19 13:55 ?342次閱讀
    封裝技術(shù)會成為<b class='flag-5'>摩爾定律</b>的未來嗎?

    軋機牌坊滑板壓虧修復(fù)的新方法

    電子發(fā)燒友網(wǎng)站提供《軋機牌坊滑板壓虧修復(fù)的新方法.docx》資料免費下載
    發(fā)表于 03-14 16:16 ?0次下載

    氫壓機軸承位磨損維修的新方法

    電子發(fā)燒友網(wǎng)站提供《氫壓機軸承位磨損維修的新方法.docx》資料免費下載
    發(fā)表于 03-01 16:23 ?0次下載

    功能密度定律是否能替代摩爾定律摩爾定律和功能密度定律比較

    眾所周知,隨著IC工藝的特征尺寸向5nm、3nm邁進,摩爾定律已經(jīng)要走到盡頭了,那么,有什么定律能接替摩爾定律呢?
    的頭像 發(fā)表于 02-21 09:46 ?734次閱讀
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩爾定律</b>?<b class='flag-5'>摩爾定律</b>和功能密度<b class='flag-5'>定律</b>比較

    摩爾定律的終結(jié):芯片產(chǎn)業(yè)的下一個勝者法則是什么?

    在動態(tài)的半導(dǎo)體技術(shù)領(lǐng)域,圍繞摩爾定律的持續(xù)討論經(jīng)歷了顯著的演變,其中最突出的是 MonolithIC 3D 首席執(zhí)行官Zvi Or-Bach于2014 年的主張。
    的頭像 發(fā)表于 01-25 14:45 ?1144次閱讀
    <b class='flag-5'>摩爾定律</b>的終結(jié):<b class='flag-5'>芯片</b>產(chǎn)業(yè)的下一個勝者法則是什么?

    Chiplet技術(shù)對英特爾和臺積電有哪些影響呢?

    Chiplet,又稱芯片堆疊,是一種模塊化的半導(dǎo)體設(shè)計和制造方法。由于集成電路(IC)設(shè)計的復(fù)雜性不斷增加、摩爾定律挑戰(zhàn)以及多樣化的應(yīng)用需
    的頭像 發(fā)表于 01-23 10:49 ?922次閱讀
    Chiplet技術(shù)對英特爾和臺積電有哪些影響呢?

    中國團隊公開“Big Chip”架構(gòu)能終結(jié)摩爾定律?

    摩爾定律的終結(jié)——真正的摩爾定律,即晶體管隨著工藝的每次縮小而變得更便宜、更快——正在讓芯片制造商瘋狂。
    的頭像 發(fā)表于 01-09 10:16 ?844次閱讀
    中國團隊公開“Big Chip”架構(gòu)能終結(jié)<b class='flag-5'>摩爾定律</b>?