0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

從輔助駕駛到自動駕駛道路還很遠

BJ數(shù)據(jù)堂 ? 來源:BJ數(shù)據(jù)堂 ? 作者:BJ數(shù)據(jù)堂 ? 2023-06-20 18:18 ? 次閱讀

傳感器人工智能(AI),經(jīng)典的電子供應(yīng)鏈已經(jīng)形成了一個協(xié)作矩陣,致力于實現(xiàn)自動駕駛車輛的安全性。為此,還需進行大量硬件和軟件開發(fā)工作,以確保駕駛員、乘客和行人受到保護。盡管機器學習和AI可以發(fā)揮作用,但其有效性取決于輸入數(shù)據(jù)的質(zhì)量。因此,除非自 動駕駛車輛建立在高性能、高可靠度傳感器信號鏈的基礎(chǔ)上,始終提供最準確的數(shù)據(jù)作為生死決策的依據(jù),否則便不能被認為是安全的。

最近發(fā)生的涉及自動駕駛車輛的事故助長了唱反調(diào)者的聲勢,他們認為車輛及其行駛環(huán)境太復雜,變數(shù)太多,而算法和軟件仍然錯誤太多。對于參與了ISO26262功能安全合規(guī)性驗證的任何人來說,他們對此持懷疑態(tài)度是可以理解的。

通過將協(xié)作和新思維放在第一位,汽車制造商將直接與芯片供應(yīng)商洽談;傳感器制造商將與AI算法開發(fā)人員討論傳感器融合;而軟件開發(fā)人員將與硬件提供商建立聯(lián)系,充分發(fā)揮兩者的優(yōu)勢。舊的關(guān)系正在改變,新的關(guān)系正在動態(tài)地形成,以優(yōu)化最終設(shè)計的性能、功能、可靠性、成本和安全性。

車輛的認知能力是預測性安全的基石車輛的智能化程度通常用自動駕駛級別來表示。L1和L2主要是預警系統(tǒng),而L3或更高級別的車輛被授權(quán)控制以避免事故。隨著車輛發(fā)展到L5,方向盤將被取消,車輛完全自動駕駛。

高質(zhì)量數(shù)據(jù)可節(jié)約時間,挽救生命和這些傳感技術(shù)一樣重要的是它們的可靠性,如果傳感器本身不可靠,輸出的信號沒有被準確捕獲以作為高精度數(shù)據(jù)提供給上游,那么這些關(guān)鍵的傳感器將變得毫無意義,也正應(yīng)驗了那句話,“如果輸入的是垃圾,那么輸出的也一定是垃圾”。
為了確保傳感器的可靠性,即使是最先進的模擬信號鏈也必須不斷改進,以檢測、獲取和數(shù)字化轉(zhuǎn)換傳感器信號,使其準確度和精度不會隨時間和溫度的變化而發(fā)生偏差。采用合適的器件和設(shè)計方法,可以大幅緩解一些出了名的難題(如偏置溫漂、相位噪聲、干擾和其他不穩(wěn)定現(xiàn)象)。高精度/高質(zhì)量的數(shù)據(jù)是機器學習和人工智能處理器得到適當訓練并做出正確決策的基礎(chǔ)。一般不會有第二次機會讓你重頭來過。

數(shù)據(jù)堂自有數(shù)據(jù)集的“智能駕駛數(shù)據(jù)解決方案”中掌握著駕乘人群的行為數(shù)據(jù),不僅包含駕駛員行為標注數(shù)據(jù)50種動態(tài)手勢識別數(shù)據(jù),103282張駕駛員行為標注數(shù)據(jù)等,還包1300萬組人機對話交互文本數(shù)據(jù),245小時車載環(huán)境普通話手機采集語音數(shù)據(jù)。不管是街景場景數(shù)據(jù),駕駛員行為數(shù)據(jù),還是車載語音數(shù)據(jù),數(shù)據(jù)堂基于Human-in-the-loop智能輔助標注技術(shù)”和豐富的AI數(shù)據(jù)項目實施經(jīng)驗及完善的項目管理流程,支持智能駕駛場景下駕駛艙內(nèi)、艙外的圖像、語音數(shù)據(jù)采集任務(wù),輔助智能駕駛技術(shù)在復雜多樣的環(huán)境下更好的感知實際道路、車輛位置和障礙物信息等,實時感知駕駛風險,實現(xiàn)智能行車、自動泊車等預定目標。對于智能駕駛而言將是其他企業(yè)難以企及的優(yōu)勢。

一旦數(shù)據(jù)質(zhì)量得到保證,各種傳感器融合方法和人工智能算法就可以做出最佳響應(yīng)。事實上,不管人工智能算法訓練得有多好,一旦模型被編譯并部署到網(wǎng)絡(luò)邊緣的設(shè)備上,它們的有效性就完全依賴于高精度的傳感器可靠數(shù)據(jù)。

審核編輯黃宇


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2551

    文章

    51106

    瀏覽量

    753653
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    30898

    瀏覽量

    269130
  • 輔助駕駛
    +關(guān)注

    關(guān)注

    1

    文章

    174

    瀏覽量

    15059
  • 自動駕駛
    +關(guān)注

    關(guān)注

    784

    文章

    13816

    瀏覽量

    166470
收藏 人收藏

    評論

    相關(guān)推薦

    自動駕駛汽車安全嗎?

    隨著未來汽車變得更加互聯(lián),汽車逐漸變得更加依賴技術(shù),并且逐漸變得更加自動化——最終實現(xiàn)自動駕駛,了解自動駕駛汽車的安全問題變得非常重要,這樣你才能回答“自動駕駛汽車安全嗎”和“
    的頭像 發(fā)表于 10-29 13:42 ?521次閱讀
    <b class='flag-5'>自動駕駛</b>汽車安全嗎?

    智能駕駛自動駕駛的關(guān)系

    智能駕駛自動駕駛在概念上存在一定的聯(lián)系和區(qū)別,以下是對兩者關(guān)系的介紹: 一、概念定義 智能駕駛 : 智能駕駛是一個更為寬泛的概念,它指的是通過機器
    的頭像 發(fā)表于 10-23 16:02 ?672次閱讀

    自動駕駛HiL測試方案案例分析--ADS HiL測試系統(tǒng)#ADAS #自動駕駛 #VTHiL

    自動駕駛
    北匯信息POLELINK
    發(fā)布于 :2024年10月22日 15:20:19

    自動駕駛技術(shù)的典型應(yīng)用 自動駕駛技術(shù)涉及哪些技術(shù)

    駕駛員的情況下完成駕駛操作。這一技術(shù)的出現(xiàn)極大地改變了傳統(tǒng)駕駛模式,不僅提高了道路交通的安全性和效率,還有望改變?nèi)藗兊某鲂蟹绞?,對城市交通產(chǎn)生深遠影響。以下是
    的頭像 發(fā)表于 10-18 17:31 ?784次閱讀

    自動駕駛HiL測試方案——攝像頭仿真之視頻注入#ADAS #自動駕駛 #VTHiL

    自動駕駛
    北匯信息POLELINK
    發(fā)布于 :2024年10月17日 15:18:41

    Mobileye端自動駕駛解決方案的深度解析

    強大的技術(shù)優(yōu)勢。 Mobileye的端端解決方案概述 1.1 什么是端自動駕駛? 端自動駕駛解決方案是一種新型的智能系統(tǒng)架構(gòu),旨在
    的頭像 發(fā)表于 10-17 09:35 ?371次閱讀
    Mobileye端<b class='flag-5'>到</b>端<b class='flag-5'>自動駕駛</b>解決方案的深度解析

    自動駕駛HiL測試方案介紹#ADAS #自動駕駛 #VTHiL

    自動駕駛
    北匯信息POLELINK
    發(fā)布于 :2024年10月12日 18:02:07

    實現(xiàn)自動駕駛,唯有端端?

    ,去年行業(yè)主流方案還是輕高精地圖城區(qū)智駕,今年大家的目標都瞄到了端端(End-to-End, E2E)。端端作為一種新興的技術(shù)路徑,逐漸受到業(yè)內(nèi)的廣泛關(guān)注。端端解決方案在自動駕駛
    的頭像 發(fā)表于 08-12 09:14 ?734次閱讀
    實現(xiàn)<b class='flag-5'>自動駕駛</b>,唯有端<b class='flag-5'>到</b>端?

    FPGA在自動駕駛領(lǐng)域有哪些優(yōu)勢?

    FPGA(Field-Programmable Gate Array,現(xiàn)場可編程門陣列)在自動駕駛領(lǐng)域具有顯著的優(yōu)勢,這些優(yōu)勢使得FPGA成為自動駕駛技術(shù)中不可或缺的一部分。以下是FPGA在自動駕駛
    發(fā)表于 07-29 17:11

    FPGA在自動駕駛領(lǐng)域有哪些應(yīng)用?

    是FPGA在自動駕駛領(lǐng)域的主要應(yīng)用: 一、感知算法加速 圖像處理:自動駕駛中需要通過攝像頭獲取并識別道路信息和行駛環(huán)境,這涉及大量的圖像處理任務(wù)。FPGA在處理圖像上的運算速度快,可
    發(fā)表于 07-29 17:09

    Momenta聯(lián)合高通基于最新一代Snapdragon Ride平臺發(fā)布面向先進駕駛輔助自動駕駛功能的全新智能駕駛解決方案

    效架構(gòu),實現(xiàn)先進的ADAS和自動駕駛功能,可支持包括高速領(lǐng)航輔助(HNP)城市領(lǐng)航輔助(UNP)等多種場景。
    發(fā)表于 04-25 08:11 ?782次閱讀
    Momenta聯(lián)合高通基于最新一代Snapdragon Ride平臺發(fā)布面向先進<b class='flag-5'>駕駛</b><b class='flag-5'>輔助</b>和<b class='flag-5'>自動駕駛</b>功能的全新智能<b class='flag-5'>駕駛</b>解決方案

    智行者聯(lián)合清華完成國內(nèi)首套全棧式端自動駕駛系統(tǒng)的開放道路測試

    近日,智行者與清華大學車輛學院李克強院士、李升波教授領(lǐng)導的研究團隊,完成了國內(nèi)首套全棧式端自動駕駛系統(tǒng)的開放道路測試。
    的頭像 發(fā)表于 04-22 09:24 ?782次閱讀
    智行者聯(lián)合清華完成國內(nèi)首套全棧式端<b class='flag-5'>到</b>端<b class='flag-5'>自動駕駛</b>系統(tǒng)的開放<b class='flag-5'>道路</b>測試

    未來已來,多傳感器融合感知是自動駕駛破局的關(guān)鍵

    巨大的進展;自動駕駛開始摒棄手動編碼規(guī)則和機器學習模型的方法,轉(zhuǎn)向全面采用端端的神經(jīng)網(wǎng)絡(luò)AI系統(tǒng),它能模仿學習人類司機的駕駛,遇到場景直接輸入傳感器數(shù)據(jù),再直接輸出轉(zhuǎn)向、制動和加速信號。模仿學習人類
    發(fā)表于 04-11 10:26

    自動駕駛發(fā)展問題及解決方案淺析

    隨著科技的飛速進步,自動駕駛汽車已經(jīng)科幻概念逐漸轉(zhuǎn)變?yōu)楝F(xiàn)實。然而,在其蓬勃發(fā)展的背后,自動駕駛汽車仍面臨一系列亟待解決的問題和挑戰(zhàn)。本文將對這些問題進行深入的剖析,并提出相應(yīng)的解決方案,以期為未來
    的頭像 發(fā)表于 03-14 08:38 ?1153次閱讀

    自動駕駛輔助系統(tǒng)性能評估工具MXeval 5.1新版本發(fā)布#泊車輔助 #ADAS

    輔助系統(tǒng)自動駕駛
    北匯信息POLELINK
    發(fā)布于 :2024年02月04日 15:40:10