為了測量和控制多載波無線基礎(chǔ)設(shè)施中的發(fā)射功率,需要進(jìn)行均方根 (rms) 功率檢波。傳統(tǒng)功率檢波器使用二極管檢波或?qū)?shù)放大器,當(dāng)所發(fā)射信號的峰均比不固定時,傳統(tǒng)方法并不能精確測定功率。測量電路的溫度穩(wěn)定性和檢波器傳遞函數(shù)的線性度至關(guān)重要。本應(yīng)用筆記所描述的技術(shù)可以改善均方根功率檢波器的溫度穩(wěn)定性及其傳遞函數(shù)的線性度;在超過50 dB 的動態(tài)范圍內(nèi),可以實(shí)現(xiàn)小于±0.3 dB 的線性度。
簡介
現(xiàn)代無線發(fā)射機(jī)一般都要求嚴(yán)格控制所發(fā)射的射頻 (RF) 功率。無線蜂窩網(wǎng)絡(luò)中,嚴(yán)格的功率控制是精確設(shè)置小區(qū)大小以增強(qiáng)覆蓋的前提。此外,當(dāng)實(shí)際發(fā)射功率不確定時,出于散熱考慮,RF 功率放大器(P A) 的尺寸必須非常大,而精密的功率控制則能避免這一問題。例如,當(dāng)一個50 W (47 dBm) 功率放大器的發(fā)射功率不確定性為 1 dB 時,為了安全地發(fā)射功率,不至于發(fā)生過熱現(xiàn)象,PA 必須按照 63 W (48 dBm) 功率要求確定尺寸。
接收機(jī)中也會用到功率測量和控制,通常是在中頻 (IF)。這種應(yīng)用的目標(biāo)是測量和控制接收信號的增益,確保不會過驅(qū)中頻放大器和模數(shù)轉(zhuǎn)換器 (ADC)。雖然精確測量接收信號(一般稱為接收信號強(qiáng)度指示或 RSSI)可以極大地提高信噪比,但它不如發(fā)射端重要;前者的目標(biāo)僅在于將接收信號保持在一定的限值以下。
均方根射頻功率檢波器能夠獨(dú)立于信號峰均比或波峰因數(shù)來測量射頻功率。當(dāng)所測量信號的峰均比不斷變化時,這一能力非常重要。無線蜂窩網(wǎng)絡(luò)中,蜂窩基站所承載的呼叫數(shù)量不斷變化,因此信號峰均比不斷改變是常見現(xiàn)象;具體原因有兩方面:一是多個載波以不同的功率水平傳輸,一是單個碼分多址(CDMA) 載波的碼域功率會發(fā)生變化。
圖 1. 現(xiàn)代無線發(fā)射機(jī)使用射頻功率測量和控制技術(shù)精密調(diào)節(jié)發(fā)射功率。接收機(jī)中,功率測量可用來防止中頻和基帶器件發(fā)生過驅(qū),同時極大地提高信噪比。
高動態(tài)范圍均方根直流轉(zhuǎn)換器
AD8362 是一款均方根直流轉(zhuǎn)換器,可以測量 60 dB 或更高范圍內(nèi)的均方根電壓,工作頻率范圍是從極低頻率至約 2.7 GHz。圖 2 顯示了 AD8362 在 2.2 GHz 的傳遞函數(shù),反映了相對于 50 Ω電阻時輸出電壓 (V)與輸入信號強(qiáng)度 (dBm) 的關(guān)系。
圖2 還顯示了此傳遞函數(shù)與最佳擬合線的偏差。這條線的斜率和截距是對所測得的數(shù)據(jù)執(zhí)行線性回歸運(yùn)算而得出。算出這條線的斜率和截距后,便可以繪制以 dB 刻度的誤差圖。圖 2 中,這條線的刻度位于右軸上。
圖 2. 對數(shù)均方根直流轉(zhuǎn)換器的傳遞函數(shù)顯示了輸出電壓 (V) 與輸入信號(dB) 之間的線性dB 關(guān)系。圖中還顯示了傳遞函數(shù)紋波和溫度漂移(刻度見右軸)。
此圖顯示的紋波反復(fù)變化,峰峰值幅度高達(dá) 0.75 dB。這一紋波導(dǎo)致測量不確定性也非常大。此圖還顯示,傳遞函數(shù)隨著溫度而變化。本例中,傳遞函數(shù)的溫度漂移主要表現(xiàn)為截距變化(斜率相對穩(wěn)定)。
對數(shù)均方根直流轉(zhuǎn)換器AD8362的工作原理
圖 3 顯示了 AD8362 的框圖。AD8362 的主要元件是一個線性dB 可變增益放大器 (VGA),它包含電壓控制衰減器、固定增益放大器、低動態(tài)范圍均方根直流轉(zhuǎn)換器和誤差放大器。
圖 3. 對數(shù)均方根直流轉(zhuǎn)換器 AD8362。均方根直流轉(zhuǎn)換器的輸入信號施加于 VGA 輸入端。VGA 的輸出施加于低動態(tài)范圍均方根直流轉(zhuǎn)換器。此檢波器的輸出與設(shè)定點(diǎn)電壓相比較,產(chǎn)生一個誤差信號,反饋至VGA的增益控制輸入端。
輸入信號施加于 VGA。VGA 的輸出施加于低動態(tài)范圍均方根直流轉(zhuǎn)換器。此檢波器的輸出與 VGA 輸出信號的均方根電壓成比例。
固定參考電壓也稱為目標(biāo)電壓,施加于完全相同的另一個低動態(tài)范圍均方根直流轉(zhuǎn)換器。兩個檢波器的輸出施加于誤差放大器/積分器,以產(chǎn)生誤差信號。誤差放大器的輸出施加于 VGA 的增益控制輸入端。VGA 的增益控制傳遞函數(shù)是負(fù)向的,即增大電壓將減小增益。
將小輸入信號施加于該電路時,信號路徑檢波器的輸出電壓將很小,導(dǎo)致驅(qū)動 VGA 的誤差信號越來越小。此誤差信號將繼續(xù)減小,而 VGA 增益則不斷增大,直到信號鏈檢波器的輸出與參考檢波器的輸出相等。
同樣,大輸入信號會產(chǎn)生越來越大的誤差信號,導(dǎo)致VGA的增益減小,直到信號路徑檢波器的輸出電壓與參考檢波器的輸出電壓相等。無論是何種情況,當(dāng)系統(tǒng)達(dá)到均衡時,均方根直流轉(zhuǎn)換器的輸入電壓均會建立在相同的值。因此,低動態(tài)范圍均方根直流轉(zhuǎn)換器只需非常小的工作范圍便可使該電路工作。
VGA 的傳遞函數(shù)為線性 dB,即 dB 增益與以V為刻度的控制電壓成比例。本例中,VGA 增益控制的斜率約為 –50 mV/dB。由此便得到一個適用于整個電路的對數(shù)傳遞函數(shù)(即 VGA 輸入與誤差放大器輸出的關(guān)系),即輸出電壓與輸入電壓的對數(shù)或均方根值成比例。請注意,此增益控制功能的溫度穩(wěn)定性對于均方根測量的整體溫度穩(wěn)定性十分重要。
高斯插值器
圖2 以一致性曲線的形式顯示了一個周期性紋波。此紋波的來源是高斯插值器。高斯插值器確定從可變衰減器采集信號的節(jié)點(diǎn),然后將該信號施加于固定增益放大器,后者構(gòu)成 AD8362 VGA的輸出級。
衰減器和高斯插值器電路的簡化原理示意圖如圖4所示。輸入梯形衰減器由多個部分組成,各部分均將輸入信號衰減 6.33 dB。信號通過可變跨導(dǎo)級從這些部分抽取。高斯插值器根據(jù)施加于可變衰減器控制端口的控制信號,確定哪些跨導(dǎo)級是有效的,從而決定施加于輸入信號的衰減量。
圖 4. AD8362 VGA 衰減器和高斯插值器。雖然高斯插值器的存在實(shí)現(xiàn)了輸出電壓與控制電壓之間的連續(xù)關(guān)系,但這種關(guān)系具有周期性紋波。
位于觸點(diǎn)之間的衰減水平要求相鄰跨導(dǎo)級同時有效,以根據(jù)跨導(dǎo)單元導(dǎo)通性能的強(qiáng)弱要求,產(chǎn)生這些觸點(diǎn)的加權(quán)平均值。為使觸點(diǎn)沿著衰減器滑動,相鄰跨導(dǎo)級的電導(dǎo)以一定的方式變化,這就是一致性曲線中所觀察到的紋波的產(chǎn)生原因。
誤差信號的濾波
低動態(tài)范圍均方根直流轉(zhuǎn)換器的平方單元產(chǎn)生一個直流分量和一個二倍輸入頻率的分量。這來自于下面的三角恒等式:
如果此信號是一個單頻正弦波,平方單元的輸出將是一個直流分量和一個二倍輸入頻率的正弦波信號。誤差放大器/積分器的主極點(diǎn)將濾除二倍頻率分量,僅留下直流分量。
如果輸入信號是一個寬帶信號,如 CDMA 或?qū)拵?CDMA(WCDMA)信號等,則直流分量將涵蓋直流至原始信號帶寬一半的范圍。因此,濾除二倍頻率分量之后,反饋至 VGA 的電路輸出仍然含有明顯的紋波,作為類似噪聲的信號疊加在直流電平上。一般做法是加強(qiáng)誤差放大器的濾波,以顯著降低誤差放大器輸出端的信號上的噪聲。這將使整體電路產(chǎn)生無噪聲輸出。
消除傳遞函數(shù)紋波
圖5 顯示該電路利用此基帶噪聲消除紋波的一種可選配置。與圖 3 所示電路相比,積分器的外部濾波器電容顯著減小,但仍然相當(dāng)大,足以執(zhí)行有效的均方根計(jì)算。將寬帶信號施加于電路輸入端時,誤差放大器的輸出包含明顯的噪聲,但仍然以正確的均方根輸出電平為中心。將誤差放大器輸出端的噪聲電平至少設(shè)置為300 mV峰峰值,300 mV是VGA的R-2R 梯形網(wǎng)絡(luò)上相鄰抽頭之間的 dB 距離與 VGA 增益控制斜率的乘積(即50 mV/dB ×6 dB)。只要此輸出噪聲電平至少為300 mV峰峰值,則其實(shí)際值并不重要。
圖 5. 減小一般用來降低平方單元輸出噪聲的濾波器電容。該噪聲反饋至VGA,導(dǎo)致VGA的增益在至少6 dB范圍內(nèi)波動。這往往會抵消VGA傳遞函數(shù)的紋波,進(jìn)而抵消整體電路傳遞函數(shù)的紋波。平方器輸出的噪聲在測量之前經(jīng)過外部濾波。
此信號經(jīng)過簡單濾波后反饋至 VGA 控制輸入。此信號中的噪聲導(dǎo)致 VGA 的增益圍繞一個中心點(diǎn)波動。VGA 的增益控制斜率為50 mV/dB。因此,噪聲將使VGA的瞬時增益發(fā)生約6 dB 變化。高斯插值器的游標(biāo)在R-2R 梯形網(wǎng)絡(luò)的大約一個抽頭上來回移動。
增益控制電壓在高斯插值器的至少一個抽頭上不斷移動,因此 VGA 輸出的均方根信號強(qiáng)度與 VGA 控制電壓之間的關(guān)系與 VGA 的增益控制紋波無關(guān)。現(xiàn)在,對施加于平方單元的信號進(jìn)行簡單的AM 調(diào)制。但是,這種調(diào)制不會改變信號的峰均比。
由于濾波器電容較小,出現(xiàn)在誤差放大器輸出端的均方根電壓將包含明顯的峰峰值噪聲。雖然要求將此信號包括噪聲在內(nèi)原原本本地反饋至 VGA 增益控制輸入端,但可以使用簡單的濾波器對進(jìn)入外部測量節(jié)點(diǎn)的均方根電壓進(jìn)行濾波,以產(chǎn)生大致上無噪聲的均方根電壓。
圖6 顯示了均方根直流轉(zhuǎn)換器的傳遞函數(shù)紋波減小情況。反饋至 VGA 增益控制端的噪聲電平為 600 mV 峰峰值,這似乎過大,因?yàn)橹恍枰阋栽?6 dB(R-2R 梯形網(wǎng)絡(luò)上的一個抽頭)范圍內(nèi)調(diào)整增益控制電壓的噪聲。然而,隨著擴(kuò)頻 CDMA 信號的呼叫負(fù)載量減小,信號的峰均比也會減小。這將導(dǎo)致檢波器輸出端的噪聲降低。因此,應(yīng)將峰峰值噪聲設(shè)置得較大,使它始終能涵蓋 R-2R 梯形網(wǎng)絡(luò)上的至少一個抽頭。請注意,誤差函數(shù)的峰值約在–57 dBm,這是用來測量傳輸至電路的功率的高動態(tài)范圍均方根功率計(jì)頭的測量誤差所造成的。
圖 6. 高峰均比信號(單載波 WCDMA、測試模型 16、2.2 GHz)的傳遞函數(shù)紋波減小情況。峰值出現(xiàn)在–57 dBm 是由測量誤差造成的。
圖 7 顯示施加未調(diào)制的正弦波時該改良電路的傳遞函數(shù)。此時,傳遞函數(shù)紋波沒有減小。如上文所述,當(dāng)對平方單元施加正弦波時,輸出為二倍頻率分量和直流電平分量。正弦波屬于窄帶信號,不會出現(xiàn)接近于直流的噪聲樣電壓。消除二倍頻率分量后,就沒有交流分量可用來在某一范圍內(nèi)調(diào)整 VGA 的增益控制輸入。
圖 7. 對電路施加未調(diào)制(2.2 GHz) 的正弦波,傳遞函數(shù)紋波沒有減小,因?yàn)榈蛣討B(tài)范圍均方根檢波器輸出端沒有產(chǎn)生基帶擾動。
在VTGT 上注入擾動
圖 8 顯示了上述情況下可以使用的一種電路。調(diào)整 VGA 所需的擾動信號耦合至參考電壓(也稱為目標(biāo)電壓)。這將在誤差放大器的輸出施產(chǎn)生擾動,并反饋至 VGA 增益控制輸入端。耦合至VREF 信號的擾動信號既可以是噪聲,也可以是正弦波等相干信號。
圖 8. 可以將擾動信號施加于 VTGT 引腳。當(dāng)輸入信號的峰均比較低時(例如正弦波),這種技術(shù)很有用。擾動信號可以是正弦波或白色噪聲。
圖 9 顯示施加正弦波作為輸入信號時該電路的傳遞函數(shù)。此時,一個 500 mV 峰峰值、10 kHz 正弦波疊加于標(biāo)稱值為1 V DC 的 VTGT 電壓上。所實(shí)現(xiàn)的傳遞函數(shù)紋波減小情況與WCDMA 信號相似。擾動信號的頻率不是很重要。應(yīng)將它設(shè)置得足夠高,以便能輕松濾除輸出紋波,同時實(shí)現(xiàn)所需的脈沖響應(yīng)時間。
圖 9. 對于峰均比較低的輸入信號,將擾動信號施加于 VTGT 輸入(500 mV峰峰值、10 kHz、直流電平= 1 V),同樣可以減小紋波。本例中,輸入信號為 2.2 GHz 正弦波。.
溫度補(bǔ)償
除了傳遞函數(shù)紋波所導(dǎo)致的測量不確定性之外,器件的溫度漂移也會導(dǎo)致(更大的)測量不確定性(圖 2)。不過,查看大量器件(圖 10)可以發(fā)現(xiàn),溫度漂移的趨勢是一致的。溫度越低,輸出電壓越高。但是,漂移量則因器件而異。此外,漂移幅度隨著頻率而變化。附錄顯示了這些器件在其它頻率時的溫度漂移圖。
圖 10. 2.2 GHz 時不同器件溫度漂移的統(tǒng)計(jì)分布(平均值±(3 sigma))顯示出這一規(guī)律:溫度較低時,輸出電壓變高;溫度較高時,輸出電壓變低。溫度漂移主要表現(xiàn)為截距移動。
使用圖 11 所示的簡單技術(shù),可以進(jìn)一步減小器件的溫度漂移。如上文所述,AD8362 的輸出電壓漂移主要是由截距漂移引起的。隨著溫度提高,整個傳遞函數(shù)會下降,而斜率則相當(dāng)穩(wěn)定。因此,溫度漂移與輸入電平關(guān)系不大。通過這種基于特定輸入電平(如5 dBm)時的漂移進(jìn)行補(bǔ)償溫度的方法,將可以在完整動態(tài)范圍內(nèi)有效(圖 12)。
圖 11. 在對數(shù)放大器的輸出電壓上增加一個具有正溫度系數(shù)的小偏移電壓,可以進(jìn)一步減小 AD8362 的低溫度偏移。
圖 12. 使用簡單的截距溫度補(bǔ)償方案,可以顯著減小 AD8362 的溫度漂移。本例中補(bǔ)償?shù)氖?.2 GHz 在5 dBm 時的漂移。由于溫度漂移主要是截距移動,因此可以在整個范圍內(nèi)實(shí)現(xiàn)良好的性能。
該補(bǔ)償方案很簡單,依靠精密溫度傳感器 TMP36 驅(qū)動電阻分壓器的一端,AD8362 驅(qū)動另一端,輸出位于中心抽頭。TMP36 在 25°C 時的輸出電壓為 750 mV,溫度系數(shù)為 10 mV/°C。隨著溫度提高,AD8362 的輸出電壓下降,TMP36 的輸出電壓則升高。所選擇的 R1 和 R2 應(yīng)確保電阻分壓器中心點(diǎn)的電壓不隨溫度而變化。實(shí)踐中,R2 比R1 大得多,因此電路的輸出電壓非常接近AD8362 VOUT引腳的電壓。
選擇 R1 和 R2
電阻比 R1/R2 由 AD8362 在目標(biāo)頻率的溫度漂移決定。選擇特定輸入電平時的漂移,以便在該電平時實(shí)現(xiàn)最佳精度。在所示的例子中,R1 和 R2 是根據(jù) 5 dBm 輸入電平時的漂移來選擇。根據(jù)以下方程式選擇 R1 和 R2:
其中10 mV/°C 是 TMP36 的溫度漂移,AD8362 的溫度漂移用 mV/°C 表示。用dB/°C表示的溫度漂移乘以對數(shù)斜率可換算為mV/°C。例如,900 MHz 時的漂移為 –0.008 dB/°C(5 dBm時),乘以斜率50 mV/dB 便得到–0.4 mV/°C。表I 顯示了頻率為 900 MHz、1900 MHz 和 2200 MHz 時 R2、R1 值的計(jì)算結(jié)果。
頻率(MHz) | 平均漂移(5 dBm時,dB/°C) | 斜率(mV/dB) | 平均漂移(5 dBm時,mV/dB) | R1 (kΩ) | R2 (kΩ) |
900 | –0.008 | 50 | –0.4 mV/°C | 1.02 | 25.5 |
1900 | –0.0024 | 51 | –0.1224 mV/°C | 1 | 82.5 |
2200 | –0.0104 | 50.5 | –0.5252 mV/°C | 1 | 19.1 |
紋波減小和溫度補(bǔ)償組合電路
溫度補(bǔ)償和傳遞函數(shù)紋波減小這兩種方案可以合并,構(gòu)成一種高度線性、溫度穩(wěn)定的均方根檢波器。
圖13給出了該電路的原理圖,兩個補(bǔ)償電路通過一個運(yùn)算放大器緩沖器隔開。
圖 13. 擾動減小方案和溫度補(bǔ)償方案可以合并,構(gòu)成一種具有低溫度漂移和出色傳遞函數(shù)線性度的電路。
圖14顯示了此電路在 2.2 GHz 和 –40°C、+25°C、+85°C 時測得的傳遞函數(shù)。在 60 dB 范圍內(nèi),測量誤差約為±0.5 dB。上文已說明,誤差尖峰出現(xiàn)在約 –57 dBm 是由測量所用的高動態(tài)范圍均方根功率檢波器頭對 AD8362 的輸入信號測量不足引起的。
圖 14. 紋波減小方案和溫度補(bǔ)償方案合并后的電路,在約 60 dB 的范圍內(nèi),其測量線性度約為± 0.5 dB(低功率時的過大誤差是由測量誤差引起的)。
結(jié)論
AD8362 是一款60 dB 對數(shù) TruPwr? 檢波器,雖然它具有出色的基準(zhǔn)性能,但仍然可以進(jìn)一步改善其測量精度。所用的技術(shù)簡單易行,涉及到電阻、電容和溫度傳感器。器件之間的溫度漂移具有可重復(fù)性,因此可以大規(guī)模使用這些技術(shù)。
審核編輯:郭婷
-
放大器
+關(guān)注
關(guān)注
143文章
13605瀏覽量
213618 -
無線
+關(guān)注
關(guān)注
31文章
5456瀏覽量
173412 -
RF
+關(guān)注
關(guān)注
65文章
3055瀏覽量
167085
發(fā)布評論請先 登錄
相關(guān)推薦
評論