機器學(xué)習(xí)(ML)是解決涉及模式識別問題的一個非常好的工具,ML算法能將雜亂的原始數(shù)據(jù)轉(zhuǎn)化為可用信號。其基本流程是基于數(shù)據(jù)產(chǎn)生模型,然后利用模型預(yù)測輸出,從而實現(xiàn)無需人工交互即可完成學(xué)習(xí)、推理和決策等目的。然而,對高性能計算資源的需求將許多ML應(yīng)用程序限制在云中。也就是說,只有云數(shù)據(jù)中心級別的性能才能滿足ML對算力的要求。令業(yè)界興奮的是,隨著算法設(shè)計以及微處理器體系結(jié)構(gòu)的不斷進步,在最小的微控制器(MCU)上運行復(fù)雜的機器學(xué)習(xí)工作負載正在成為可能。
在嵌入式設(shè)備上運行機器學(xué)習(xí)模型通常被稱為嵌入式機器學(xué)習(xí)(Embedded machine learning)。嵌入式設(shè)備中的機器學(xué)習(xí)有很多好處:
它消除了在云服務(wù)器上傳輸和存儲數(shù)據(jù)的需要,從而減少了傳輸數(shù)據(jù)時涉及的數(shù)據(jù)和隱私泄露。
它強化了對知識產(chǎn)權(quán)、個人數(shù)據(jù)和商業(yè)秘密的保護。
ML模型的執(zhí)行可有效避免向云服務(wù)器傳輸數(shù)據(jù)的需要,節(jié)約了寶貴的帶寬和網(wǎng)絡(luò)資源。
使用基于ML模型的嵌入式設(shè)備是可持續(xù)的,它的碳足跡要低得多。因為設(shè)備中使用的微控制器都是低能耗的。
嵌入式系統(tǒng)比基于云中心的系統(tǒng)效率更高,邊緣設(shè)備上的ML模型可以實現(xiàn)實時響應(yīng)。
深度學(xué)習(xí)模型最初的成功主要歸功于擁有大量內(nèi)存和GPU集群的大型服務(wù)器。雖然云端深度學(xué)習(xí)非常成功,但它并不適用于所有情況,因為許多應(yīng)用需要在設(shè)備上進行推理。當(dāng)今的大多數(shù)AI應(yīng)用程序都是基于機器學(xué)習(xí)技術(shù),如果在資源受限的設(shè)備上能夠流暢地運行機器學(xué)習(xí)模型,必將為許多新興應(yīng)用打開了一扇技術(shù)之門,這也是近些年邊緣計算和嵌入式機器學(xué)習(xí)越來越火的一個重要原因。
嵌入式機器學(xué)習(xí)是機器學(xué)習(xí)的一個領(lǐng)域,這些被稱為微型機器學(xué)習(xí)(Tiny Machine Learning,TinyML)的模型非常適用于內(nèi)存和處理能力有限、互聯(lián)網(wǎng)連接不存在或受限的邊緣設(shè)備?,F(xiàn)在,TinyML已經(jīng)成為機器學(xué)習(xí)中一個快速發(fā)展的領(lǐng)域,通過硬件、算法和軟件的有機結(jié)合,使之能夠以mW及以下的功率完成傳感器數(shù)據(jù)的分析,實現(xiàn)了在小型硬件上嵌入AI的過程。
雖然TinyML是一個新概念,但將機器學(xué)習(xí)應(yīng)用于智能設(shè)備并不是什么新鮮事。比如,大多數(shù)的智能手機都有某種神經(jīng)網(wǎng)絡(luò),音樂識別、許多相機模式(如夜視和肖像模式)都是依靠嵌入式深度學(xué)習(xí)的例子。這些都是TinyML的用武之地,也將Edge AI向前推進了一步。
Edge AI芯片組將AI引入到無數(shù)的終端內(nèi)部,包括移動設(shè)備、汽車、智能音箱和無線攝像頭等。然而,這些設(shè)備往往因難以支持高計算性能和高數(shù)據(jù)吞吐量,無法充分利用產(chǎn)生的所有數(shù)據(jù)。TinyML的橫空出世,使得在MCU上運行機器學(xué)習(xí)模型成為可能。這些MCU普遍價格低廉,外形小巧,內(nèi)置幾百KB的低功耗內(nèi)存(SRAM)和幾兆字節(jié)的存儲空間,功耗很低,且應(yīng)用廣泛。TinyML芯片組的主要目標(biāo)是解決成本和能效問題,它們通過為小型推理工作負載設(shè)計的軟件,在低功耗、低處理能力和小內(nèi)存的硬件上實現(xiàn)了數(shù)據(jù)分析性能,這一技術(shù)有可能徹底改變物聯(lián)網(wǎng)的未來。
如今,全球活躍的物聯(lián)網(wǎng)(IoT)設(shè)備超過2500億臺,預(yù)計每年增長20%。這些設(shè)備每天都會收集大量數(shù)據(jù),在云中處理這些數(shù)據(jù)存在相當(dāng)大的挑戰(zhàn)。現(xiàn)在,TinyML有望彌合邊緣硬件和設(shè)備智能之間的鴻溝。麥肯錫研究人員預(yù)測,到2025年,物聯(lián)網(wǎng)行業(yè)將產(chǎn)生4-11萬億美元的潛在經(jīng)濟影響,其中制造業(yè)為最大的垂直產(chǎn)業(yè),達到1.2-3.7萬億美元。
市場咨詢公司ABI Research在其新的白皮書《TinyML:科技領(lǐng)域的下一個重大機遇》中預(yù)測,2021至2026年間,物聯(lián)網(wǎng)連接數(shù)量將增加近三倍,達到236億。每一次新的連接都代表著利用AI和機器學(xué)習(xí)的機會,TinyML技術(shù)將是抓住企業(yè)這一機會的關(guān)鍵。因此,ABI預(yù)計,TinyML設(shè)備的出貨量將從2020年的1520萬臺增加到2030年的25億臺。
名廠云集TinyML賽道
自TinyML誕生以來,創(chuàng)新市場一直熱點不斷,許多產(chǎn)品都非常引入關(guān)注。例如:基于NVIDIA Jetson Xavier NX的工業(yè)AI智能相機,這是由Adlink公司推出的業(yè)界首款工業(yè)智能相機,該相機基于英偉達(NVIDIA)的Jetson Xavier NX,性能高、尺寸小,效率大約是前代產(chǎn)品的十倍,是一款緊湊、可靠、功能強大的Edge AI應(yīng)用產(chǎn)品,為制造業(yè)、物流、醫(yī)療保健、農(nóng)業(yè)和許多其他商業(yè)領(lǐng)域的人工智能創(chuàng)新打開了方便之門。
TinyML專注于優(yōu)化機器學(xué)習(xí)的工作負載,以便它們可以在低功耗的微控制器上運行。TinyML的激增將導(dǎo)致Edge AI在傳統(tǒng)關(guān)鍵市場之外的擴張,更多的終端用戶可以從基于聲波、溫度、壓力、振動和其他數(shù)據(jù)源的智能連接傳感器和物聯(lián)網(wǎng)設(shè)備中受益。如今,TinyML正處在機器學(xué)習(xí)和嵌入式物聯(lián)網(wǎng)的交匯點上,有可能為許多行業(yè)帶來顛覆性的變革。TinyML的潛在應(yīng)用幾乎是沒有邊界的,比如:可以預(yù)測何時需要服務(wù)的工業(yè)機器人,可以監(jiān)測作物是否存在有害昆蟲的傳感器,當(dāng)庫存減少時可以要求重新進貨的店內(nèi)貨架,在保持隱私的同時可以跟蹤生命體征的醫(yī)療監(jiān)護儀。
音頻分析、模式識別和語音人機界面是當(dāng)今TinyML應(yīng)用最多的領(lǐng)域。恩智浦(NXP)基于EdgeReady MCU的3D人臉識別解決方案利用i.MX RT117F跨界MCU,能夠幫助開發(fā)人員快速地將3D人臉識別和先進的活體檢測填加到其產(chǎn)品中,即使在戶外照明條件下設(shè)備也能正常工作。該方案具備的3D活體檢測功能還能識別和抵御使用照片或3D模型的欺詐,僅需使用高性能3D結(jié)構(gòu)化光攝像頭模塊(SLM)和可選的基于低成本CMOS傳感器的RGB攝像頭,無需使用昂貴、耗電、基于Linux的MPU。
方案中采用的i.MX RT1170是一款跨界MCU,它采用了主頻達1GHz的Cortex-M7內(nèi)核和主頻達400MHz的Arm Cortex-M4,擁有卓越的計算能力、多種媒體功能以及實時功能。人臉識別和活體檢測可在i.MX RT117F MCU上完全離線執(zhí)行,不再借助云,不僅消除了延遲問題,還能有效保護消費者的隱私。
圖1:i.MX RT117F 3D人臉識別硬件結(jié)構(gòu)框圖(圖源:NXP)
視覺、運動和手勢識別同樣是TinyML的重要應(yīng)用領(lǐng)域。意法半導(dǎo)體(ST)的AI解決方案主要基于STM32產(chǎn)品組合,借助預(yù)訓(xùn)練神經(jīng)網(wǎng)絡(luò),嵌入式開發(fā)人員可以在任何基于Cortex M4、M33和M7的STM32上進行移植、優(yōu)化和驗證。STM32CubeMX是一種圖形工具,通過分步過程可以非常輕松地配置STM32微控制器和微處理器,以及為Arm Cortex-M內(nèi)核或面向Arm Cortex-A內(nèi)核的特定Linux設(shè)備樹生成相應(yīng)的初始化C代碼。
STM32Cube.AI是STM32CubeMX的AI擴展包,設(shè)計人員可以在其基礎(chǔ)上更高效地開發(fā)自己的AI產(chǎn)品。FP-AI-VISION1屬于STM32Cube的一種功能包(FP),含有基于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的計算機視覺應(yīng)用實例。
目前,F(xiàn)P-AI-VISION1包括三個基于CNN的圖像分類應(yīng)用示例:
在彩色(RGB24位)幀圖像上運行的食品識別應(yīng)用;
在彩色(RGB24位)幀圖像上運行的人員存在檢測應(yīng)用;
在灰度(8位)幀圖像上運行的人員存在檢測應(yīng)用。
現(xiàn)在,ST提供的TinyML計算機視覺解決方案可識別18種常見食物,也可以實施人員在場檢測,或者基于目標(biāo)檢測模型統(tǒng)計場景中的人數(shù)等。
隨著IoT市場規(guī)模的擴大,邊緣的數(shù)據(jù)量增長迅猛,由TinyML賦能的AIoT應(yīng)運而生。根據(jù)Markets and Markets的分析數(shù)據(jù),2019年的AIoT市場規(guī)模約為51億美元,預(yù)計到2024年將增長至162億美元,復(fù)合年均增長率(CAGR)高達26%。AIoT的主要作用是賦能聯(lián)網(wǎng)設(shè)備使其具備機器學(xué)習(xí)能力,從而執(zhí)行復(fù)雜的智能運算。
2021年6月英飛凌(Infineon)推出的ModusToolbox ML,其目標(biāo)就是讓公司的PSoC MCU具有深度學(xué)習(xí)的功能。ModusToolbox ML是一項基于ModusToolbox軟件的全新功能,可為開發(fā)人員提供基于深度學(xué)習(xí)的ML模型所需的中間件、軟件庫和專用工具。ML可與ModusToolbox中已有的軟件框架無縫集成,十分便利地集成到安全的AIoT系統(tǒng)中。ModusToolbox ML允許開發(fā)人員使用他們首選的深度學(xué)習(xí)框架(如TensorFlow),直接部署到PSoC MCU上。此外,ML還有助于工程師優(yōu)化嵌入式平臺的模型,降低平臺復(fù)雜度,并提供具有基于測試數(shù)據(jù)的性能驗證功能。
為了幫助開發(fā)人員快速地將本地智能添加到他們的IoT設(shè)計中,Infineon選擇了與SensiML公司合作。SensiML是QuickLogic的子公司,向市場提供尖端的軟件,使超低功耗IoT終端能夠?qū)崿F(xiàn)AI,公司的旗艦方案SensiML Analytics Toolkit提供了一個端到端的開發(fā)平臺,涵蓋數(shù)據(jù)采集、標(biāo)簽、算法和固件自動生成和測試。SensiML的“Analytics Toolkit” Edge AI開發(fā)軟件現(xiàn)在可以與Infineon ModusToolbox配合使用, 為開發(fā)人員提供了一種快速簡便的方法來記錄來自Infineon XENSIV傳感器的數(shù)據(jù),創(chuàng)建復(fù)雜的基于AI/ML的模型,并在PSoC6 MCU上運行定制的應(yīng)用程序。
不斷壯大的TinyML生態(tài)系統(tǒng)
TinyML社區(qū)成立于2019年,是一個由研究人員和行業(yè)工程師組成的社區(qū),致力于將ML能力引入到微控制器設(shè)備。TinyML由機器學(xué)習(xí)體系結(jié)構(gòu)、技術(shù)、工具和方法組成,能夠在以電池驅(qū)動設(shè)備為主的低功率目標(biāo)設(shè)備上對各種傳感模式(視覺、音頻、運動、化學(xué)和其他)執(zhí)行分析。TinyML的創(chuàng)始人之一Evgeni Gousev認(rèn)為:“我們正處于數(shù)字轉(zhuǎn)型革命中,TinyML以低成本執(zhí)行設(shè)備上的機器智能和分析,并結(jié)合固有的隱私功能,提供了極大的節(jié)能優(yōu)勢。”
TinyML將在許多行業(yè)普及,它將影響包括:零售、醫(yī)療保健、交通、健康、農(nóng)業(yè)、健身和制造業(yè)等幾乎每一個行業(yè)。與此同時,行業(yè)的參與者很快就認(rèn)識到了TinyML的價值,并迅速采取行動創(chuàng)建了一個支持性的生態(tài)系統(tǒng)。
Arm是TinyML的堅定支持者,同時也是TinyML技術(shù)的領(lǐng)導(dǎo)者。隨著超過1800億基于Arm的芯片的出貨,其IP、工具和1100多個軟件合作伙伴已經(jīng)構(gòu)建了數(shù)十億微型智能IoT設(shè)備。
如今,Arm?Cortex?-M系列MCU已經(jīng)成為TinyML應(yīng)用最廣泛的平臺,它們能夠快速高效地執(zhí)行實時計算,價格便宜,可靠性高,響應(yīng)速度快,且耗電很少。Cortex-M55處理器是Arm最具AI能力的Cortex-M處理器,它提供了增強、節(jié)能的DSP和ML性能。Ethos-U55 NPU是一種新的ML處理器,稱為microNPU,專門設(shè)計用于在面積受限的嵌入式和物聯(lián)網(wǎng)設(shè)備中加速ML推理。Ethos-U55與支持AI的Cortex-M55處理器相結(jié)合,使ML性能比現(xiàn)有基于Cortex-M的系統(tǒng)提高了480倍。
事實上,在2021年初,Raspberry Pi(樹莓派)就發(fā)布了第一塊微控制器板,這是市場上價格最實惠的開發(fā)板之一,售價僅為4美元。這款名為Raspberry Pi Pico,基于RP2040 MCU,內(nèi)置功能強大的雙核Cortex-M0+處理器,能夠運行TensorFlow Lite Micro,很快我們就能看到該板的各種TinyML用例。
對于淹沒在海量數(shù)據(jù)中的決策者來說,TinyML好比是一個救星,它將邊緣的數(shù)據(jù)充分利用起來,使人們能夠更快地獲取正確的信息。此外,TinyML還通過在設(shè)備上處理數(shù)據(jù)并只傳輸關(guān)鍵信息來改善了人們普遍擔(dān)憂的隱私問題。
接下來,我們將看到一個擁有數(shù)萬億智能設(shè)備的新世界,這些智能設(shè)備有TinyML技術(shù)的支持,能夠感知、分析和自主行動,并將為我們創(chuàng)造一個更健康、更可持續(xù)的環(huán)境。
審核編輯:郭婷
-
mcu
+關(guān)注
關(guān)注
146文章
17162瀏覽量
351348 -
ML
+關(guān)注
關(guān)注
0文章
149瀏覽量
34664 -
機器學(xué)習(xí)
+關(guān)注
關(guān)注
66文章
8420瀏覽量
132685
發(fā)布評論請先 登錄
相關(guān)推薦
評論