0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

從零開始學(xué)習(xí)機器學(xué)習(xí)最簡單的 KNN 算法

WpOh_rgznai100 ? 來源:YXQ ? 2019-06-10 14:00 ? 次閱讀

今天開始,我打算寫寫機器學(xué)習(xí)教程。說實話,相比爬蟲,掌握機器學(xué)習(xí)更實用競爭力也更強些。

目前網(wǎng)上大多這類教程對新手都不友好,要么直接調(diào)用 Sklearn 包,要么滿篇抽象枯燥的算法公式文字,看這些教程你很難入門,而真正適合入門的手寫 Python 代碼教程寥寥無幾。最近看了慕課網(wǎng) bobo 老師的機器學(xué)習(xí)課程后,大呼過癮,最好的機器學(xué)習(xí)教程沒有之一。我打算以他的教程為基礎(chǔ)并結(jié)合自己的理解,從零開始更新機器學(xué)習(xí)系列推文。

第一篇推文先不扯諸如什么是機器學(xué)習(xí)、機器學(xué)習(xí)有哪些算法這些總結(jié)性的文章,在你沒有真正知道它是什么之前,這些看了也不會有印象反而會增加心理負荷。

所以我將長驅(qū)直入直接從一個算法實戰(zhàn)開始,就像以前爬蟲教程一樣,當你真正感受到它的趣味性后,才會有想去學(xué)它的欲望。

下面就從一個場景故事開始。

01 場景代入

在一個酒吧里,吧臺上擺著十杯幾乎一樣的紅酒,老板跟你打趣說想不想來玩?zhèn)€游戲,贏了免費喝酒,輸了付 3 倍酒錢,贏的概率有 50%。你是個愛冒險的人,果斷說玩。

老板接著道:你眼前的這十杯紅酒,每杯略不相同,前五杯屬于「赤霞珠」,后五杯屬于「黑皮諾」?,F(xiàn)在,我重新倒一杯酒,你只需要根據(jù)剛才的十杯正確地告訴我它屬于哪一類。

聽完你有點心虛:根本不懂酒啊,光靠看和嘗根本區(qū)分辨不出來,不過想起自己是搞機器學(xué)習(xí)的,不由多了幾分底氣爽快地答應(yīng)了老板。

你沒有急著品酒而是問了老板每杯酒的一些具體信息:酒精濃度、顏色深度等,以及一份紙筆。老板一邊倒一杯新酒,你邊瘋狂打草稿。很快,你告訴老板這杯新酒應(yīng)該是「赤霞珠」。

老板瞪大了眼下巴也差點驚掉,從來沒有人一口酒都不嘗就能答對,無數(shù)人都是反復(fù)嘗來嘗去,最后以猶豫不定猜錯而結(jié)束。你神秘地笑了笑,老板信守承諾讓你開懷暢飲。微醺之時,老板終于忍不住湊向你打探是怎么做到的。

你炫耀道:無他,但機器學(xué)習(xí)熟爾。

02 kNN 算法介紹

接下來,我們就要從這個故事中開始接觸機器學(xué)習(xí)了,機器學(xué)習(xí)給很多人的感覺就是「難」,所以我編了上面這個故事,就是要引出機器學(xué)習(xí)的一個最簡單算法:kNN 算法(K-Nearest Neighbor),也叫 K 近鄰算法。

別被「算法」二字嚇到,我保證你只要有高中數(shù)學(xué)加上一點點 Python 基礎(chǔ)就能學(xué)會這個算法。

學(xué)會 kNN 算法,只需要三步:

了解 kNN 算法思想

掌握它背后的數(shù)學(xué)原理(別怕,你初中就學(xué)過)

最后用簡單的 Python 代碼實現(xiàn)

在說 kNN 算法前說兩個概念:樣本和特征。

上面的每一杯酒稱作一個「樣本」,十杯酒組成一個樣本集。酒精濃度、顏色深度等信息叫作「特征」。這十杯酒分布在一個多維特征空間中。說到空間,我們最多能感知三維空間,為了理解方便,我們假設(shè)區(qū)分赤霞珠和黑皮諾,只需利用:酒精濃度和顏色深度兩個特征值。這樣就能在二維坐標軸來直觀展示。

橫軸是酒精濃度值,縱軸是顏色深度值。十杯酒在坐標軸上形成十個點,綠色的 5 個點代表五杯赤霞珠,紅色的 5 個點代表五杯黑皮諾。可以看到兩類酒有明顯的界限。老板新倒的一杯酒是圖中黃色的點。

記得我們的問題么?要確定這杯酒是赤霞珠還是黑皮諾,答案顯而易見,通過主觀距離判斷它應(yīng)該屬于赤霞珠。

這就用到了 K 近鄰算法思想。該算法首先需要取一個參數(shù) K,機器學(xué)習(xí)中給的經(jīng)驗取值是 3,我們假設(shè)先取 3 ,具體取多少以后再研究。對于每個新來的點,K 近鄰算法做的事情就是在所有樣本點中尋找離這個新點最近的三個點,統(tǒng)計三個點所屬類別然后投票統(tǒng)計,得票數(shù)最多的類別就是新點的類別。

上圖有綠色和紅色兩個類別。離黃色最近的 3 個點都是綠點,所以綠色和紅色類別的投票數(shù)是 3:0 ,綠色取勝,所以黃色點就屬于綠色,也就是新的一杯就屬于赤霞珠。

這就是 K 近鄰算法,它的本質(zhì)就是通過距離判斷兩個樣本是否相似,如果距離夠近就覺得它們相似屬于同一個類別。當然只對比一個樣本是不夠的,誤差會很大,要比較最近的 K 個樣本,看這 K 個 樣本屬于哪個類別最多就認為這個新樣本屬于哪個類別。

是不是很簡單?

再舉一例,老板又倒了杯酒讓你再猜,你可以在坐標軸中畫出它的位置。離它最近的三個點,是兩個紅點和一個綠點。紅綠比例是 2:1,紅色勝出,所以 K 近鄰算法告訴我們這杯酒大概率是黑皮諾。

可以看到 K 近鄰算法就是通過距離來解決分類問題。這里我們解決的二分類問題,事實上 K 近鄰算法天然適合解決多分類問題,除此之外,它也適合解決回歸問題,之后一一細講。

02 數(shù)學(xué)理論

K 近鄰算法基本思想我們知道了,來看看它背后的數(shù)學(xué)原理。該算法的「距離」在二維坐標軸中就是兩點之間的距離,計算距離的公式有很多,一般常用歐拉公式,這個我們中學(xué)就學(xué)過:

解釋下就是:空間中 m 和 n 兩個點,它們的距離等于 x y 兩坐標差的平方和再開根。

如果在三維坐標中,多了個 z 坐標,距離計算公式也相同:

當特征數(shù)量有很多個形成多維空間時,再用 x y z 寫就不方便,我們換一個寫法,用 X 加下角標的方式表示特征維度,這樣 n 維 空間兩點之間的距離公式可以寫成:

公式還可以進一步精簡:

這就是 kNN 算法的數(shù)學(xué)原理,不難吧?

只要計算出新樣本點與樣本集中的每個樣本的坐標距離,然后排序篩選出距離最短的 3 個點,統(tǒng)計這 3 個點所屬類別,數(shù)量占多的就是新樣本所屬的酒類。

根據(jù)歐拉公式,我們可以用很基礎(chǔ)的 Python 實現(xiàn)。

03 Python 代碼實現(xiàn)

首先隨機設(shè)置十個樣本點表示十杯酒,我這里取了 Sklearn 中的葡萄酒數(shù)據(jù)

集的部分樣本點,這個數(shù)據(jù)集在之后的算法中會經(jīng)常用到會慢慢介紹。

1import numpy as np 2X_raw = [[14.23, 5.64], 3 [13.2 , 4.38], 4 [13.16, 5.68], 5 [14.37, 4.80 ], 6 [13.24, 4.32], 7 [12.07, 2.76], 8 [12.43, 3.94], 9 [11.79, 3. ],10 [12.37, 2.12],11 [12.04, 2.6 ]]1213y_raw = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

X_raw 的兩列值分別是顏色深度和酒精濃度值,y_raw 中的 0 表示黑皮諾,1 表示赤霞珠。

新的一杯酒信息:

1x_test = np.array([12.8,4.1])

在機器學(xué)習(xí)中常使用 numpy 的 array 數(shù)組而不是列表 list,因為 array 速度快也能執(zhí)行向量運算,所以在運算之前先把上面的列表轉(zhuǎn)為數(shù)組:

1X_train = np.array(X_raw)2y_train = np.array(y_raw)

有了 X Y 坐標就可以繪制出第一張散點圖:

1import matplotlib.pyplot as plt 2plt.style.use(‘ggplot’) 3plt.figure(figsize=(10,6)) 4 5plt.scatter(X_train[y_train==1,0],X_train[y_train==1,1],s=100,color=color_g,label=‘赤霞珠’) 6plt.scatter(X_train[y_train==0,0],X_train[y_train==0,1],s=100,color=color_r,label=‘黑皮諾’) 7plt.scatter(x_test2[0],x_test2[1],s=100,color=color_y) # x_test 8 9plt.xlabel(‘酒精濃度’)10plt.ylabel(‘顏色深度’)11plt.legend(loc=‘lower right’)1213plt.tight_layout()14plt.savefig(‘葡萄酒樣本.png’)

接著,根據(jù)歐拉公式計算黃色的新樣本點到每個樣本點的距離:

1from math import sqrt 2distances = [sqrt(np.sum((x - x_test)**2)) for x in X_train] # 列表推導(dǎo)式 3distances 4 5[out]: 6[1.7658142597679973, 7 1.5558920271021373, 8 2.6135799203391503, 9 1.9784084512557052,10 1.5446682491719705,11 0.540092584655631,12 0.7294518489934753,13 0.4172529209005018,14 1.215113163454334,15 0.7011419257183239]

上面用到了列表生成式,以前的爬蟲教程中經(jīng)常用到,如果不熟悉可以在公眾號搜索「列表生成式」關(guān)鍵字復(fù)習(xí)。

這樣就計算出了黃色點到每個樣本點的距離,接著找出最近的 3 個點,可以使用 np.argsort 函數(shù)返回樣本點的索引位置:

1sort = np.argsort(distances)2sort34[out]:array([7, 5, 9, 6, 8, 4, 1, 0, 3, 2], dtype=int64)

通過這個索引值就能在 y_train 中找到對應(yīng)酒的類別,再統(tǒng)計出排名前 3 的就行了:

1K = 3 2topK = [y_train[i] for i in sort[:K]]3topK45[out]:[1, 1, 1]

可以看到距離黃色點最近的 3 個點都是綠色的赤霞珠,與剛才肉眼觀測的結(jié)果一致。

到這里,距離輸出黃色點所屬類別只剩最后一步,使用 Counter 函數(shù)統(tǒng)計返回類別值即可:

1from collections import Counter2votes = Counter(topK)3votes4[out]:Counter({1: 3})56predict_y = votes.most_common(1)[0][0]7predict_y8[out]:1

最后的分類結(jié)果是 1 ,也就是新的一杯酒是赤霞珠。

我們使用 Python 手寫完成了一個簡易的 kNN 算法,是不是不難?

如果覺得難,來看一個更簡單的方法:調(diào)用 sklearn 庫中的 kNN 算法,俗稱調(diào)包,只要 5 行代碼就能得到同樣的結(jié)論。

04 sklearn 調(diào)包

1from sklearn.neighbors import KNeighborsClassifier 2kNN_classifier = KNeighborsClassifier(n_neighbors=3)3kNN_classifier.fit(X_train,y_train )4x_test = x_test.reshape(1,-1)5kNN_classifier.predict(x_test)[0]67[out]:1

首先從 sklearn 中引入了 kNN 的分類算法函數(shù) KNeighborsClassifier 并建立模型,設(shè)置最近的 K 個樣本數(shù)量 n_neighbors 為 3。接下來 fit 訓(xùn)練模型,最后 predict 預(yù)測模型得到分類結(jié)果 1,和我們剛才手寫的代碼結(jié)果一樣的。

你可以看到,sklearn 調(diào)包雖然簡單,不過作為初學(xué)者最好是懂得它背后的算法原理,然后用 Python 代碼親自實現(xiàn)一遍,這樣入門機器學(xué)習(xí)才快。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • KNN
    KNN
    +關(guān)注

    關(guān)注

    0

    文章

    22

    瀏覽量

    10823
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8434

    瀏覽量

    132866

原文標題:Python手寫機器學(xué)習(xí)最簡單的KNN算法

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學(xué)習(xí) AI,機器學(xué)習(xí)算法

    前言 由于本人最近在學(xué)習(xí)一些機器算法,AI 算法的知識,需要搭建一個學(xué)習(xí)環(huán)境,所以就在最近購買的華為云 Flexus X 實例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?122次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學(xué)習(xí)</b> AI,<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>

    傳統(tǒng)機器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法特征,供各位老師選擇。 01 傳統(tǒng)
    的頭像 發(fā)表于 12-30 09:16 ?313次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    NPU與機器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?547次閱讀

    【每天學(xué)點AI】KNN算法簡單有效的機器學(xué)習(xí)分類器

    過程,其實就是一個簡單的分類問題,而KNN(K-NearestNeighbors)算法正是模仿這種人類決策過程的機器學(xué)習(xí)
    的頭像 發(fā)表于 10-31 14:09 ?390次閱讀
    【每天學(xué)點AI】<b class='flag-5'>KNN</b><b class='flag-5'>算法</b>:<b class='flag-5'>簡單</b>有效的<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>分類器

    人工智能、機器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個很大的子集是機器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)
    發(fā)表于 10-24 17:22 ?2517次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    合肥湯誠音頻功放芯片XA9812B早教機套裝兒童智能學(xué)習(xí)機應(yīng)用解決方案

    、智能學(xué)習(xí)機和在線學(xué)習(xí)平臺等,幫助家長為孩子提供更好的學(xué)習(xí)環(huán)境。 早教機智能學(xué)習(xí)機是一種先進的教育設(shè)備,結(jié)合了現(xiàn)代科技和兒童教育理念,旨在為嬰幼兒提供多樣化的
    的頭像 發(fā)表于 09-25 17:22 ?528次閱讀
    合肥湯誠音頻功放芯片XA9812B早教機套裝兒童智能<b class='flag-5'>學(xué)習(xí)機</b>應(yīng)用解決方案

    【「時間序列與機器學(xué)習(xí)」閱讀體驗】+ 簡單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時間序列分析與機器學(xué)習(xí)融合應(yīng)用的宏偉藍圖。作者不僅扎實地構(gòu)建了時間序列分析的基礎(chǔ)知識,更巧妙地展示了機器學(xué)習(xí)如何在這一領(lǐng)域發(fā)揮巨
    發(fā)表于 08-12 11:21

    BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)機

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network),即反向傳播神經(jīng)網(wǎng)絡(luò),是一種基于梯度下降算法的多層前饋神經(jīng)網(wǎng)絡(luò),其學(xué)習(xí)機制的核心在于通過反向傳播算法
    的頭像 發(fā)表于 07-10 15:49 ?684次閱讀

    機器學(xué)習(xí)算法原理詳解

    機器學(xué)習(xí)作為人工智能的一個重要分支,其目標是通過讓計算機自動從數(shù)據(jù)中學(xué)習(xí)并改進其性能,而無需進行明確的編程。本文將深入解讀幾種常見的機器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?1251次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機器學(xué)習(xí)的對比

    在人工智能的浪潮中,機器學(xué)習(xí)和深度學(xué)習(xí)無疑是兩大核心驅(qū)動力。它們各自以其獨特的方式推動著技術(shù)的進步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機器
    的頭像 發(fā)表于 07-01 11:40 ?1491次閱讀

    機器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個經(jīng)典數(shù)據(jù)集,在統(tǒng)計學(xué)習(xí)
    的頭像 發(fā)表于 06-27 08:27 ?1701次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典<b class='flag-5'>算法</b>與應(yīng)用

    小度發(fā)布首款百度文心大模型學(xué)習(xí)機

    近日,小度科技推出了一款基于文心大模型的學(xué)習(xí)機——小度學(xué)習(xí)機Z30。這款學(xué)習(xí)機針對學(xué)習(xí)計劃、診斷、練習(xí)、學(xué)習(xí)、預(yù)習(xí)、育兒、答疑七大環(huán)節(jié)進行了
    的頭像 發(fā)表于 05-29 09:10 ?919次閱讀

    全球首款基于文心大模型的學(xué)習(xí)機—小度學(xué)習(xí)機Z30重磅發(fā)布

    AI時代,大模型成為推動智能教育升維發(fā)展的新質(zhì)生產(chǎn)力。5月27日小度科技召開新品發(fā)布會,全球首款基于文心大模型的學(xué)習(xí)機——小度學(xué)習(xí)機Z30重磅發(fā)布,
    的頭像 發(fā)表于 05-28 09:30 ?706次閱讀

    機器學(xué)習(xí)怎么進入人工智能

    ,人工智能已成為一個熱門領(lǐng)域,涉及到多個行業(yè)和領(lǐng)域,例如語音識別、機器翻譯、圖像識別等。 在編程中進行人工智能的關(guān)鍵是使用機器學(xué)習(xí)算法,這是一類基于樣本數(shù)據(jù)和模型訓(xùn)練來進行預(yù)測和判斷的
    的頭像 發(fā)表于 04-04 08:41 ?361次閱讀

    AI大模型落地學(xué)習(xí)機,大模型應(yīng)用成學(xué)習(xí)機創(chuàng)新方向

    電子發(fā)燒友網(wǎng)報道(文/李彎彎)大模型在終端產(chǎn)品上的落地,除了智能手機、PC之外,還有學(xué)習(xí)機。過去一段時間,隨著大模型的火熱,互聯(lián)網(wǎng)、教育公司都已經(jīng)紛紛披露大模型在教育領(lǐng)域的最新動態(tài),并發(fā)布搭載AI
    的頭像 發(fā)表于 02-23 01:19 ?3935次閱讀