0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

傳感器在工業(yè)4.0預(yù)測性維護(hù)中的應(yīng)用

微云疏影 ? 來源:意法半導(dǎo)體 ? 作者:意法半導(dǎo)體 ? 2022-08-11 15:26 ? 次閱讀

工業(yè)預(yù)測性維護(hù)概念存在已久,最早可以追溯到人們第一次說“機(jī)器很快就會(huì)壞了”的時(shí)候。從給手表內(nèi)部的軸承加注潤滑油,到養(yǎng)護(hù)維修大型發(fā)電設(shè)備,從簡單的家電,到復(fù)雜的空間站,預(yù)測性維護(hù)無處不在。

早期預(yù)測性維護(hù)在很大程度上依賴技工的專長和直覺來解決問題或診斷故障,而今天的先進(jìn)診斷設(shè)備和工業(yè) 4.0 技術(shù)增加了電子傳感器機(jī)械傳感器,能夠更準(zhǔn)確地發(fā)現(xiàn)并診斷問題。傳感器已成為預(yù)測性維護(hù)應(yīng)用的重要組件。

pYYBAGL0r0CABJEaAAEu3Hkzi6k041.png

Figure 1 -- Typical PM Application in Industry 4.0

圖 1—工業(yè) 4.0 中的典型預(yù)測性維護(hù)應(yīng)用

作為工業(yè) 4.0 的重要組成部分,本地決策系統(tǒng)在設(shè)備內(nèi)或附近收集傳感器數(shù)據(jù),以此為依據(jù)做出正確判斷,幫助檢修人員提前發(fā)現(xiàn)昂貴、復(fù)雜的可能是遠(yuǎn)程設(shè)備出現(xiàn)的小問題,避免釀成大事故。這個(gè)功能要求傳感器必須具有邊緣處理[13]能力和人工智能AI),因?yàn)槿斯ぶ悄苁穷A(yù)測性維護(hù)應(yīng)用的關(guān)鍵技術(shù)。通過直接在傳感器或主控制器上實(shí)現(xiàn)AI 和邊緣處理,例如,STM32[8] 中的 FP-AI-MONITOR1[7],可以在本地執(zhí)行數(shù)據(jù)分析決策。

圖 1所示是一個(gè)典型的預(yù)測性維護(hù)應(yīng)用示意圖,其中,傳感器檢測設(shè)備產(chǎn)生的信息并將數(shù)據(jù)傳給主控制器。在工業(yè)3.0 中,描述機(jī)器狀況的原始傳感器數(shù)據(jù)直接傳輸給操作員,不涉及任何本地處理或決策任務(wù)。在工業(yè) 4.0 中,主控制器在本地處理傳感數(shù)據(jù),在本地做出決策。如果發(fā)送條件沒有滿足特定的通知標(biāo)準(zhǔn),主控制器允許無線連接模塊部分睡眠。操作員僅在收到云端的通知消息后才開始介入。這種方法減少了傳輸?shù)皆贫说臄?shù)據(jù)量,降低了本地傳感器節(jié)點(diǎn)的功耗。

更深入地講,實(shí)現(xiàn)這個(gè)感知決策模塊有四個(gè)關(guān)鍵步驟: 重要參數(shù)識(shí)別; 數(shù)據(jù)分析; 傳感器選擇和決策樹位置選擇。

1) 重要參數(shù)識(shí)別

許多參數(shù)可以指示機(jī)器的健康狀況。設(shè)計(jì)人員需要根據(jù)這些參數(shù)的特性和預(yù)測機(jī)器狀態(tài)的能力來篩選重要參數(shù)。在圖 2 的應(yīng)用場景中,聲學(xué)、溫度和物理振動(dòng)加速度等參數(shù)都可以指示機(jī)器的重型軸承的磨損情況。設(shè)計(jì)人員將研究分析哪些參數(shù)可以用于預(yù)測軸承 60%健康狀態(tài)。最理想的是,只用一個(gè)參數(shù)就足以提供最有意義的信息,并讓決策樹能夠判斷軸承健康狀況已達(dá)到60%。

在這個(gè)示例中,機(jī)器的健康狀況分為四個(gè)階段,如表 1 所示:

表 1——機(jī)器健康狀態(tài)分期

poYBAGL0r0CAWVUIAABI3C1vxdM907.png

pYYBAGL0r0CAf_Y5AAGQgBsVnsc005.png

圖 2 – 重要參數(shù)與機(jī)器健康狀況的關(guān)系

設(shè)定當(dāng)重型軸承達(dá)到60%健康狀況時(shí)發(fā)出預(yù)警,我們捕獲了加速度、超聲波和溫度與時(shí)間(周)的關(guān)系并繪制成圖,以便分析研究重要參數(shù),如圖2所示,三個(gè)參數(shù)都可以指示軸承的磨損狀況。研究發(fā)現(xiàn)如下:

當(dāng)軸承在t3 之后進(jìn)入損壞階段時(shí),加速度數(shù)據(jù)給出強(qiáng)烈信號(hào)。但是,它不能很好地跟蹤 t3之前的健康狀態(tài),也就是不能有效記錄機(jī)器達(dá)到50%健康狀況前的狀況,這意味著我們無法在軸承損壞前準(zhǔn)確地預(yù)判機(jī)器的健康狀況,所以,僅依靠加速度計(jì)的指示信息不足以預(yù)測早期磨損程度。

直到軸承進(jìn)入損壞階段t4,溫度數(shù)據(jù)才能準(zhǔn)確地跟蹤軸承的健康狀況。不管什么原因引起軸承損壞,溫度參數(shù)都不能在摩擦力急劇增加之前給出軸承損壞的明顯信號(hào)。

超聲參數(shù)可以有效地跟蹤軸承的健康狀況,最早在 t1 時(shí)就能發(fā)出信號(hào)。隨著摩擦力增加,當(dāng)軸承達(dá)到60%健康狀況時(shí),它會(huì)發(fā)出一個(gè)明顯信號(hào)。 然而,從繪制的數(shù)據(jù)圖看,當(dāng)軸承健康在 t3 左右下降到 50% 以下時(shí),超聲波信號(hào)開始失去對(duì)機(jī)器健康狀況的跟蹤,這是因?yàn)檩S承嚴(yán)重磨損并破裂,極大地改變了軸承的特性,并導(dǎo)致軸承的振動(dòng)曲線超出了超聲掃描范圍。這個(gè)階段的強(qiáng)烈的振動(dòng)恰好可以被加速度計(jì)感知到。

從這個(gè)示例不難看出,超聲檢測是預(yù)測性維護(hù)實(shí)現(xiàn)60%健康狀況預(yù)警的重要參數(shù)。

2) 數(shù)據(jù)分析

一旦確定了重要參數(shù),下一步就是研究數(shù)據(jù)概要信息。設(shè)計(jì)人員必須評(píng)測不同的數(shù)據(jù)處理能力和 人工智能算法,才能可靠地預(yù)測機(jī)器的健康狀況。

有許多數(shù)據(jù)處理方法可用實(shí)現(xiàn)預(yù)測性維護(hù)應(yīng)用,這些數(shù)據(jù)處理方法可分為兩大類:時(shí)域和頻域[9]。每種方法都有各種的優(yōu)缺點(diǎn)。

時(shí)域方法簡單易懂,算力要求低。傳感器的輸出始終在時(shí)域范圍內(nèi)。時(shí)域信號(hào)的均方根 (RMS)、平均值或峰值檢測是典型的跟蹤值。比較原始數(shù)據(jù)或處理后數(shù)據(jù)的閾值或幅度可以獲得決策標(biāo)志。這種方法的缺點(diǎn)是它僅適用于簡單的波形分析。在實(shí)際工業(yè)應(yīng)用中,有些數(shù)據(jù)分析是很復(fù)雜的,因?yàn)樗鼈兛赡馨煌瑱C(jī)械部件的振動(dòng)和其他機(jī)器的環(huán)境振動(dòng)。圖 3 所示是在時(shí)域中的數(shù)據(jù)分析示例。

poYBAGL0r0CAPr3pAAEoe6eRMmk566.png

圖 3 - 時(shí)域加速波形示例

在這個(gè)例子中,電機(jī)不平衡產(chǎn)生的振動(dòng)幅度遠(yuǎn)大于輸出軸產(chǎn)生的振動(dòng)幅度。如果采用RMS或平均值或其他的時(shí)域信號(hào)處理方法,傳感器是不能有效地識(shí)別輸出軸的振動(dòng)程度。

pYYBAGL0r0GAKO4GAAExfV2Cv4w572.png

圖 4 -由多個(gè)波形組成的復(fù)雜波形

不過,有一個(gè)強(qiáng)大的信號(hào)處理方法可以管理復(fù)雜的信號(hào)。這種類型的復(fù)雜波形是由多個(gè)簡單波形組成,如圖 4 所示??焖俑道锶~變換 (FFT) 是一個(gè)有效的波形分析工具,可將時(shí)域數(shù)據(jù)轉(zhuǎn)換為頻域數(shù)據(jù),把不同部件產(chǎn)生的振動(dòng)置于不同頻譜中,如圖 5 所示。

poYBAGL0r0GAPgbyAAA3sAH3ygw121.png

圖 5 - 頻譜

傅里葉變換方法把不同源的振動(dòng)幅度分成不同的頻譜。除傅里葉變換之外,數(shù)據(jù)處理還可以利用其他的技術(shù)方法,例如,平均值、RMS、峰值、神經(jīng)網(wǎng)絡(luò)等,進(jìn)行準(zhǔn)確的數(shù)據(jù)過濾,為決策樹提供更可靠的數(shù)據(jù),實(shí)現(xiàn)更智能的決策。

參數(shù)識(shí)別和數(shù)據(jù)分析需要一些工具,下面是一些常用工具:

a) 專業(yè)測量工具

可以使用現(xiàn)成的專業(yè)測量設(shè)備獲取準(zhǔn)確而詳細(xì)的測量數(shù)據(jù),要求苛刻的高精度應(yīng)用強(qiáng)烈推薦采用這類專業(yè)級(jí)測量設(shè)備。

b) 評(píng)估演示套件

意法半導(dǎo)體等傳感器廠商提供免寫軟件的評(píng)估套件(圖 6)。這些小主板,例如,STEVAL-MKI109V3,具有插接傳感器板卡的插座。設(shè)計(jì)人員可以選擇把喜歡的傳感器板卡插到主板上。有些廠商還提供用于控制傳感器的圖形用戶界面 (GUI)軟件。這些GUI軟件可以存取傳感器的全部寄存器,配置和檢索數(shù)據(jù),不用寫代碼,并提供實(shí)用的數(shù)據(jù)處理運(yùn)算功能,例如,傅里葉變換FFT 就是其中的一個(gè)功能(圖 7)。

poYBAGL0r0GAfPL9AAKhsnvRsco287.png

圖 6 -- STEVAL-MKI109V3評(píng)估板與傳感器板卡的連接

pYYBAGL0r0KAO_wTAAJd9GV8zJc149.png

圖 7 -- STEVAL-MKI109V3 GUI 截屏

若評(píng)估傳感器的特性功能及其適用性,建議使用免寫代碼的評(píng)估板。這些板卡還可以執(zhí)行初始數(shù)據(jù)采集,啟動(dòng)工程算法和數(shù)據(jù)分析過程。如果到了后面的原型開發(fā)或概念驗(yàn)證階段,傳感器廠商可能會(huì)提供另一個(gè)強(qiáng)大的開發(fā)工具,以大幅簡化開發(fā)任務(wù),縮短開發(fā)周期。以STWIN 開發(fā)套件為例:

c) STWIN 無線工業(yè)節(jié)點(diǎn) (STEVAL-STWINKT1B)[10][11] 是一個(gè)開發(fā)套件和參考設(shè)計(jì),可簡化工況監(jiān)測和預(yù)測性維護(hù)等先進(jìn)工業(yè)物聯(lián)網(wǎng)應(yīng)用原型開發(fā)和測試。

poYBAGL0r0KACY1CAAFWoCilwqY978.png

圖 8 -- STEVAL-STWINKT1B

pYYBAGL0r0KAGx1FAAH4BsRP07E061.png

圖 9 - SensorTile Box與手機(jī)交互

STWIN 開發(fā)套件基于STM32超低功耗微控制器,集成各種工業(yè)級(jí)傳感器,包括慣性傳感器(振動(dòng)傳感器、加速度計(jì)、6 軸 IMU、磁傳感器)、環(huán)境傳感器(高精度溫度傳感器、壓力傳感器濕度傳感器)和高性能傳聲器(數(shù)字傳聲器和模擬傳聲器,有超聲波感應(yīng)功能),支持各類狀態(tài)監(jiān)測,尤其是與振動(dòng)分析相關(guān)的監(jiān)測。該開發(fā)套件還配有豐富的軟件包和優(yōu)化的固件庫,以及云端儀表板應(yīng)用程序,以加快端到端整體解決方案的設(shè)計(jì)周期。

該套件板載Bluetooth? 低能耗無線連接模塊,并可以插接一塊Wi-Fi無線連接子板 (STEVAL-STWINWFV1)。有線連接可以通過板載 RS485 收發(fā)器實(shí)現(xiàn)。

3) 傳感器選型

手頭有了數(shù)據(jù)分析工具后,下一步就是選擇合適的傳感器:

a) 根據(jù)1) 中發(fā)現(xiàn)的重要參數(shù)選擇傳感器類型

意法半導(dǎo)體提供加速度計(jì)、陀螺儀、磁力計(jì)、振動(dòng)傳感器、傳聲器、壓力傳感器、濕度傳感器、溫度傳感器、激光傳感器、紅外傳感器等各種傳感器。工業(yè)級(jí)傳感器通常提供更高的性能和精度、更好的溫度和時(shí)間穩(wěn)定性,甚至提供產(chǎn)品生命周期保證。

b) 根據(jù)2) 中發(fā)現(xiàn)的最大測量范圍和靈敏度或重要頻率范圍(帶寬)選擇傳感器量程;

每個(gè)傳感器都有自己的最大量程和頻響帶寬。設(shè)計(jì)人員必須仔細(xì)研究這兩個(gè)參數(shù),以選擇最適合的傳感器。圖 9 顯示了一系列我們?yōu)轭A(yù)測性維護(hù)應(yīng)用場景推薦的型號(hào)。

poYBAGL0r0OAGiQ4AAFi_z2LzF8415.png

圖 10 – 根據(jù)應(yīng)用場景選擇傳感器

4) 決策樹位置選擇

作為業(yè)界公認(rèn)的 MEMS 技術(shù)先驅(qū),意法半導(dǎo)體率先在傳感器產(chǎn)品中嵌入邊緣處理功能。設(shè)計(jì)人員可以給傳感器中的邊緣處理分區(qū)或?qū)⒃谥骺刂破鲀?nèi)嵌入決策樹。最佳選擇取決于數(shù)據(jù)處理和決策樹的復(fù)雜程度。意法半導(dǎo)體傳感器中的決策功能分為三類:

嵌入式簡單邏輯

意法半導(dǎo)體MEMS 傳感器都有簡單的嵌入式閾值比較邏輯功能。振幅和時(shí)間窗口閾值一旦達(dá)到預(yù)設(shè)值,就會(huì)觸發(fā)中斷標(biāo)志。

有限狀態(tài)機(jī) (FSM)[6]

狀態(tài)機(jī)是用于設(shè)計(jì)邏輯連接的數(shù)學(xué)抽象方法(圖 10)。FSM 是一種由預(yù)定數(shù)量的狀態(tài)和狀態(tài)之間的轉(zhuǎn)換組成的行為模型,類似于流程圖。傳感器可以設(shè)為用戶定義模式一旦滿足,就立即生成決策標(biāo)志。為了便于實(shí)現(xiàn)決策功能,意法半導(dǎo)體有些傳感器嵌入了16 狀態(tài)機(jī)。

pYYBAGL0r0SARn93AACnai3oH3Q202.png

圖 11 - 傳感器的嵌入式有限狀態(tài)機(jī)

機(jī)器學(xué)習(xí)核心 (MLC)[5]

MLC機(jī)器學(xué)習(xí)核心不是用來處理復(fù)雜數(shù)據(jù)的,所以它不能做有限狀態(tài)機(jī)的工作。MLC 確實(shí)可以將一些原本應(yīng)在應(yīng)用處理器上運(yùn)行的低密度算法轉(zhuǎn)移到 MEMS 傳感器上,從而顯著降低系統(tǒng)功耗。當(dāng)數(shù)據(jù)模式與用戶定義的一個(gè)類集合匹配時(shí),MLC 可以識(shí)別這些數(shù)據(jù)模式。傳感器使用包含濾波器的可配置的專用計(jì)算模塊和在用戶設(shè)定的固定時(shí)間窗口內(nèi)計(jì)算出來的特征來過濾輸入數(shù)據(jù)。機(jī)器學(xué)習(xí)處理的基本原理是通過一系列可配置的節(jié)點(diǎn)以“如果-那么-否則”為條件比較預(yù)設(shè)閾值和“特征”值的邏輯處理過程(圖 11)。

poYBAGL0r0SAPgVHAAC4yfO0NjY363.png

圖 12 - 傳感器的MLC內(nèi)的決策過程

總之,作為工業(yè) 4.0應(yīng)用的基本組成部分,傳感器是預(yù)測性維護(hù)中必不可少的組件,并且,利用內(nèi)置的智能功能,傳感器可以降低主控制器的負(fù)荷,從而提高整個(gè)系統(tǒng)的能效。作為 MEMS 傳感器行業(yè)的領(lǐng)導(dǎo)者,意法半導(dǎo)體提供全系列的傳感器(加速度計(jì)、陀螺儀、磁力計(jì)、振動(dòng)傳感器、傳聲器、壓力傳感器、濕度傳感器、溫度傳感器、激光傳感器和紅外傳感器等)。在預(yù)測性維護(hù)等應(yīng)用領(lǐng)域,這個(gè)范圍廣泛的產(chǎn)品在創(chuàng)新概念和實(shí)際應(yīng)用之間架起了一座重要的橋梁。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2551

    文章

    51200

    瀏覽量

    754512
  • 人工智能
    +關(guān)注

    關(guān)注

    1792

    文章

    47387

    瀏覽量

    238899
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8423

    瀏覽量

    132757
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    傳感器工業(yè) 4.0 預(yù)測維護(hù)的應(yīng)用

    預(yù)測維護(hù)很大程度上依賴技工的專長和直覺來解決問題或診斷故障,而今天的先進(jìn)診斷設(shè)備和工業(yè) 4.0
    的頭像 發(fā)表于 04-21 17:07 ?7142次閱讀
    <b class='flag-5'>傳感器</b><b class='flag-5'>在</b><b class='flag-5'>工業(yè)</b> <b class='flag-5'>4.0</b> <b class='flag-5'>預(yù)測</b><b class='flag-5'>性</b><b class='flag-5'>維護(hù)</b><b class='flag-5'>中</b>的應(yīng)用

    使用 MEMS 加速計(jì)快速部署傳感器,實(shí)現(xiàn)基于 IIoT 的預(yù)測維護(hù)

    作者:Richard A. Quinnell 使用振動(dòng)傳感器對(duì)機(jī)器進(jìn)行狀態(tài)監(jiān)測,這是工業(yè)物聯(lián)網(wǎng) (IIoT)(或工業(yè)4.0預(yù)測
    的頭像 發(fā)表于 10-03 14:44 ?1042次閱讀
    使用 MEMS 加速計(jì)快速部署<b class='flag-5'>傳感器</b>,實(shí)現(xiàn)基于 IIoT 的<b class='flag-5'>預(yù)測</b><b class='flag-5'>性</b><b class='flag-5'>維護(hù)</b>

    工業(yè)4.0數(shù)據(jù)記錄

    連接的無線傳感器節(jié)點(diǎn)的實(shí)時(shí)數(shù)據(jù),提前預(yù)測可能發(fā)生的故障,并通知控制系統(tǒng)采取糾正措施,以避免意外的系統(tǒng)停機(jī)。累積的數(shù)據(jù)可以用于改進(jìn)預(yù)測分析,并實(shí)現(xiàn)更好的機(jī)器預(yù)防
    發(fā)表于 07-18 06:54

    2020年工業(yè)傳感器產(chǎn)業(yè)市場發(fā)展前景預(yù)測分析

    傳感器市場年度報(bào)告》,對(duì)去年市場進(jìn)行總結(jié),并預(yù)測未來發(fā)展情況。下面工采網(wǎng)小編和大家一起走進(jìn)2020年工業(yè)傳感器市場了解未來
    發(fā)表于 05-11 11:34

    如何使用Amazon IoT和Amazon SageMaker進(jìn)行設(shè)備實(shí)時(shí)預(yù)測維護(hù)

    物聯(lián)網(wǎng)(IoT)的一個(gè)典型應(yīng)用場景是能夠從傳感器數(shù)據(jù)獲取上下文洞察力,例如分析設(shè)備異?;蛘哌M(jìn)行預(yù)測維護(hù),及時(shí)給予用戶通知。
    發(fā)表于 07-06 06:10

    采用IO-Link堆棧v.1.1的多傳感器預(yù)測維護(hù)套件

    STEVAL-BFA001V2B 是一款用于狀態(tài)監(jiān)測(CM)和預(yù)測維護(hù)(PdM)的工業(yè)參考設(shè)計(jì)套件,其布局能夠滿足面向工業(yè)應(yīng)用的 IEC6
    發(fā)表于 09-13 07:42

    工業(yè)物聯(lián)網(wǎng)預(yù)測維護(hù)解決方案石油和天然氣公司的應(yīng)用介紹

    簡而言之,工業(yè)物聯(lián)網(wǎng)驅(qū)動(dòng)的預(yù)測維護(hù)利用從設(shè)備傳感器(例如溫度、振動(dòng)、流量傳感器等)獲取的數(shù)據(jù)來
    發(fā)表于 02-11 13:00 ?1139次閱讀

    工業(yè)物聯(lián)網(wǎng)預(yù)測維護(hù)有什么用

    工業(yè)物聯(lián)網(wǎng)(IIOT)預(yù)測維護(hù)有望幫助您避免花費(fèi)時(shí)間來處理善后事宜。隨著傳感器技術(shù)和連接
    發(fā)表于 03-25 08:31 ?1015次閱讀

    怎么選擇最合適的預(yù)測維護(hù)傳感器?

    基于狀態(tài)的監(jiān)控(CbM)涉及使用傳感器來測量當(dāng)前的健康狀態(tài),以監(jiān)測機(jī)器或資產(chǎn)。預(yù)測維護(hù)(PdM)涉及使用CbM、機(jī)器學(xué)習(xí)和分析等的技術(shù)組合來預(yù)測
    的頭像 發(fā)表于 05-24 10:08 ?2118次閱讀
    怎么選擇最合適的<b class='flag-5'>預(yù)測</b><b class='flag-5'>性</b><b class='flag-5'>維護(hù)</b><b class='flag-5'>傳感器</b>?

    選擇最合適的預(yù)測維護(hù)傳感器

    最好的 PdM 策略是有效利用盡可能多的技術(shù)和傳感器來及早檢測故障并具有高度置信度的策略,因此,沒有一個(gè)傳感器適合所有人的解決方案。本文旨在闡明為什么預(yù)測
    的頭像 發(fā)表于 12-19 16:20 ?945次閱讀
    選擇最合適的<b class='flag-5'>預(yù)測</b><b class='flag-5'>性</b><b class='flag-5'>維護(hù)</b><b class='flag-5'>傳感器</b>

    選擇最合適的預(yù)測維護(hù)傳感器

    選擇最合適的預(yù)測維護(hù)傳感器
    的頭像 發(fā)表于 12-29 10:02 ?958次閱讀
    選擇最合適的<b class='flag-5'>預(yù)測</b><b class='flag-5'>性</b><b class='flag-5'>維護(hù)</b><b class='flag-5'>傳感器</b>

    工業(yè)物聯(lián)網(wǎng)“殺手級(jí)”應(yīng)用—預(yù)測維護(hù)

    作為工業(yè)物聯(lián)網(wǎng)行業(yè)的重要應(yīng)用,預(yù)測維護(hù)日益受到市場重視。振動(dòng)監(jiān)測是主要的設(shè)備預(yù)測
    的頭像 發(fā)表于 03-07 17:28 ?1691次閱讀
    <b class='flag-5'>工業(yè)</b>物聯(lián)網(wǎng)“殺手級(jí)”應(yīng)用—<b class='flag-5'>預(yù)測</b><b class='flag-5'>性</b><b class='flag-5'>維護(hù)</b>

    應(yīng)用案例:面向工業(yè)4.0預(yù)測維護(hù)

    Microchip工程師社區(qū)網(wǎng)站 (www.microchip.com.cn)又有“ 應(yīng)用案例 ”文章上線啦! 今天分享的是: 《面向工業(yè)4.0預(yù)測
    的頭像 發(fā)表于 03-11 00:50 ?755次閱讀

    工業(yè)設(shè)備為什么要做預(yù)測維護(hù)?

    ZETA技術(shù)研發(fā)商縱行科技推出了ZETA工業(yè)設(shè)備預(yù)測維護(hù)方案,推出了“ZETA+Edge AI”邊緣智能終端——ZETA端智能振溫傳感器。
    的頭像 發(fā)表于 10-17 16:57 ?1188次閱讀
    <b class='flag-5'>工業(yè)</b>設(shè)備為什么要做<b class='flag-5'>預(yù)測</b><b class='flag-5'>性</b><b class='flag-5'>維護(hù)</b>?

    ST傳感器電機(jī)預(yù)測維護(hù)的應(yīng)用

    電子發(fā)燒友網(wǎng)站提供《ST傳感器電機(jī)預(yù)測維護(hù)的應(yīng)用.pdf》資料免費(fèi)下載
    發(fā)表于 08-01 09:42 ?0次下載
    ST<b class='flag-5'>傳感器</b><b class='flag-5'>在</b>電機(jī)<b class='flag-5'>預(yù)測</b><b class='flag-5'>性</b><b class='flag-5'>維護(hù)</b><b class='flag-5'>中</b>的應(yīng)用