0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

當(dāng)ToF像素遇到摩爾定律如何發(fā)展?

MEMS ? 來源:MEMS ? 作者:麥姆斯咨詢編譯 ? 2021-03-26 09:39 ? 次閱讀

據(jù)麥姆斯咨詢報(bào)道,1975年戈登·摩爾(Gordon Moore)做出了一項(xiàng)預(yù)測,這就是著名的摩爾定律:集成電路可以容納的晶體管數(shù)量每兩年(或18個(gè)月,取決于芯片類型)翻一番,見圖1。簡單來講,集成電路的處理性能或處理速度每兩年翻一番。通常情況下,對于圖像傳感器來講,像素?cái)?shù)量每兩年翻一番,或像素尺寸每兩年增加√2倍。其實(shí)沒那么快,因?yàn)閳D像傳感器更像是模擬芯片,而不是數(shù)字芯片,不會與技術(shù)節(jié)點(diǎn)成比例增長。彩色(RGB)圖像傳感器能夠增加像素尺寸,但帶來的是性能降低,因?yàn)槌叽?成本的比值非常重要。通過僅對像素區(qū)進(jìn)行有針對性的工藝改進(jìn),或多片晶圓3D堆疊,將處理功能轉(zhuǎn)移到較小工藝節(jié)點(diǎn),這也在一定程度上起到了幫助作用。

圖1:摩爾定律


將此規(guī)律運(yùn)用到ToF像素領(lǐng)域進(jìn)行綜合思考,與RGB圖像傳感器不同,ToF像素值需要計(jì)量等級。這是因?yàn)門oF像素值支持深度測量,而不是讓圖像看起來“漂亮”。ToF像素值性能由信噪比決定。接下來讓我們進(jìn)行深入探討。為了簡化分析,在研究占主導(dǎo)地位的噪聲源時(shí),有三種不同機(jī)制。

1. 信號散粒噪聲(Signal Shot Noise)
2. 環(huán)境散粒噪聲(Ambient Shot Noise)
3. 讀取噪聲(Read Noise)

選擇其中一種機(jī)制(如:環(huán)境散粒噪聲)進(jìn)行深入分析。這里,量子效率(Quantum Efficiency,以下簡稱QE)是從入射光子中收集光子電荷的概率,而調(diào)制對比度(Modulation Contrast,以下簡稱MC)是光子電荷生成可用于獲取深度信號的概率,則:

b990cfb8-8cd1-11eb-8b86-12bb97331649.jpg

假設(shè)MC和QE的值處于上限,由于像素面積減少了一半,時(shí)間抖動就增加了√2。這是否意味著像素較小會導(dǎo)致性能不佳?事實(shí)證明,還有另一個(gè)杠桿參數(shù)可以提高性能,這是調(diào)制頻率。來自微軟的Cyrus曾在其博客文章中提到了基于相位的ToF測量方法。時(shí)間抖動的不同表達(dá)方式為:

ba0cee72-8cd1-11eb-8b86-12bb97331649.jpg

ba65821c-8cd1-11eb-8b86-12bb97331649.jpg

圖2:環(huán)境散粒噪聲限制機(jī)制:頻率標(biāo)度與像素尺寸的關(guān)系


從圖2看出,可以通過增加頻率來恢復(fù)因?yàn)橄袼爻叽缈s小產(chǎn)生的性能下降。但是,只有當(dāng)MC在更高頻率時(shí)不會顯著降低,才可能這樣做。微軟的ToF技術(shù)是高頻MC的領(lǐng)導(dǎo)者(頻率在320 MHz時(shí)MC為78%)。此外,更高的頻率會增加芯片功耗和激光光學(xué)功耗。

下圖(圖3)展示了ToF像素尺寸隨著摩爾定律發(fā)展的規(guī)律。

baa2e3fa-8cd1-11eb-8b86-12bb97331649.jpg

圖3:摩爾定律 vs. ToF像素尺寸發(fā)展


注:文章來自微軟資深首席科學(xué)家Swati Mehta,由麥姆斯咨詢編譯。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 摩爾定律
    +關(guān)注

    關(guān)注

    4

    文章

    634

    瀏覽量

    79038
  • 圖像傳感器
    +關(guān)注

    關(guān)注

    68

    文章

    1902

    瀏覽量

    129559
  • 數(shù)字芯片
    +關(guān)注

    關(guān)注

    1

    文章

    110

    瀏覽量

    18402

原文標(biāo)題:當(dāng)ToF像素遇到摩爾定律,劇情如何發(fā)展?

文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    擊碎摩爾定律!英偉達(dá)和AMD將一年一款新品,均提及HBM和先進(jìn)封裝

    電子發(fā)燒友網(wǎng)報(bào)道(文/吳子鵬)摩爾定律是由英特爾創(chuàng)始人之一戈登·摩爾提出的經(jīng)驗(yàn)規(guī)律,描述了集成電路上的晶體管數(shù)量和性能隨時(shí)間的增長趨勢。根據(jù)摩爾定律,集成電路上可容納的晶體管數(shù)目約每隔18個(gè)月便會
    的頭像 發(fā)表于 06-04 00:06 ?4055次閱讀
    擊碎<b class='flag-5'>摩爾定律</b>!英偉達(dá)和AMD將一年一款新品,均提及HBM和先進(jìn)封裝

    摩爾定律時(shí)代,提升集成芯片系統(tǒng)化能力的有效途徑有哪些?

    電子發(fā)燒友網(wǎng)報(bào)道(文/吳子鵬)當(dāng)前,終端市場需求呈現(xiàn)多元化、智能化的發(fā)展趨勢,芯片制造則已經(jīng)進(jìn)入后摩爾定律時(shí)代,這就導(dǎo)致先進(jìn)的工藝制程雖仍然是芯片性能提升的重要手段,但效果已經(jīng)不如從前,先進(jìn)封裝
    的頭像 發(fā)表于 12-03 00:13 ?2303次閱讀

    高算力AI芯片主張“超越摩爾”,Chiplet與先進(jìn)封裝技術(shù)迎百家爭鳴時(shí)代

    電子發(fā)燒友網(wǎng)報(bào)道(文/吳子鵬)英特爾CEO基辛格此前表示,摩爾定律并沒有失效,只是變慢了,節(jié)奏周期正在放緩至三年。當(dāng)然,摩爾定律不僅是周期從18個(gè)月變?yōu)榱?年,且開發(fā)先進(jìn)制程成本高昂,經(jīng)濟(jì)效益也變得
    的頭像 發(fā)表于 09-04 01:16 ?3287次閱讀
    高算力AI芯片主張“超越<b class='flag-5'>摩爾</b>”,Chiplet與先進(jìn)封裝技術(shù)迎百家爭鳴時(shí)代

    ToF技術(shù)應(yīng)用發(fā)展方向

    ToF技術(shù)在消費(fèi)電子、機(jī)器人、安防監(jiān)控等領(lǐng)域有廣泛應(yīng)用前景。d-ToF在功耗、距離等方面有優(yōu)勢,但產(chǎn)業(yè)鏈尚不成熟;i-ToF雖工藝成熟但效果不完美。隨著技術(shù)迭代,兩者將各有優(yōu)勢,共同推動ToF
    的頭像 發(fā)表于 07-24 09:18 ?439次閱讀

    “自我實(shí)現(xiàn)的預(yù)言”摩爾定律,如何繼續(xù)引領(lǐng)創(chuàng)新

    59年前,1965年4月19日,英特爾公司聯(lián)合創(chuàng)始人戈登·摩爾(Gordon Moore)應(yīng)邀在《電子》雜志上發(fā)表了一篇四頁短文,提出了我們今天熟知的摩爾定律(Moore’s Law)。 就像你為
    的頭像 發(fā)表于 07-05 15:02 ?277次閱讀

    封裝技術(shù)會成為摩爾定律的未來嗎?

    ,性能也隨之增強(qiáng)。這不僅是一條觀察法則,更像是一道命令,催促著整個(gè)行業(yè)向著更小、更快、更便宜的方向發(fā)展。01但這些年來,摩爾定律好像遇到了壁壘。我們的芯片已經(jīng)小得難
    的頭像 發(fā)表于 04-19 13:55 ?342次閱讀
    封裝技術(shù)會成為<b class='flag-5'>摩爾定律</b>的未來嗎?

    ?淺析片上網(wǎng)絡(luò)(NoC)技術(shù)的發(fā)展及其給高端FPGA帶來的優(yōu)勢

    摩爾定律的推動下,集成電路工藝取得了高速發(fā)展,單位面積上的晶體管數(shù)量不斷增加。
    的頭像 發(fā)表于 04-02 11:46 ?1437次閱讀
    ?淺析片上網(wǎng)絡(luò)(NoC)技術(shù)的<b class='flag-5'>發(fā)展</b>及其給高端FPGA帶來的優(yōu)勢

    當(dāng)串口屏遇到AG工藝蓋板

    當(dāng)串口屏遇到AG工藝蓋板
    的頭像 發(fā)表于 04-02 11:39 ?1448次閱讀

    電源解決方案跟摩爾定律有何關(guān)系?它如何跟上摩爾定律的步伐?

    根據(jù)電源解決方案或與功耗、能源效率或整體能源或碳足跡相關(guān)的分析來對任何系統(tǒng)(或系統(tǒng)集合)進(jìn)行分析時(shí),將源與負(fù)載分開出來能幫助整個(gè)過程。
    的頭像 發(fā)表于 03-28 13:50 ?832次閱讀
    電源解決方案跟<b class='flag-5'>摩爾定律</b>有何關(guān)系?它如何跟上<b class='flag-5'>摩爾定律</b>的步伐?

    Chiplet封裝用有機(jī)基板的信號完整性設(shè)計(jì)

    摩爾定律在設(shè)計(jì)、制造、封裝3個(gè)維度上推動著集成電路行業(yè)發(fā)展。
    的頭像 發(fā)表于 03-15 14:48 ?2130次閱讀
    Chiplet封裝用有機(jī)基板的信號完整性設(shè)計(jì)

    功能密度定律是否能替代摩爾定律?摩爾定律和功能密度定律比較

    眾所周知,隨著IC工藝的特征尺寸向5nm、3nm邁進(jìn),摩爾定律已經(jīng)要走到盡頭了,那么,有什么定律能接替摩爾定律呢?
    的頭像 發(fā)表于 02-21 09:46 ?734次閱讀
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩爾定律</b>?<b class='flag-5'>摩爾定律</b>和功能密度<b class='flag-5'>定律</b>比較

    半導(dǎo)體行業(yè)能否走出低谷,中國影響幾何?

    英特爾和臺積電都在技術(shù)上投入資金。三星和其他內(nèi)存制造商必須跟上技術(shù)節(jié)點(diǎn)的轉(zhuǎn)變,即使同時(shí)保持產(chǎn)能遠(yuǎn)離市場。他們需要跟上技術(shù)的步伐,以在摩爾定律的基礎(chǔ)上保持競爭力,摩爾定律推動了內(nèi)存業(yè)務(wù)的基本成本。
    的頭像 發(fā)表于 01-29 11:05 ?796次閱讀

    摩爾定律的終結(jié):芯片產(chǎn)業(yè)的下一個(gè)勝者法則是什么?

    在動態(tài)的半導(dǎo)體技術(shù)領(lǐng)域,圍繞摩爾定律的持續(xù)討論經(jīng)歷了顯著的演變,其中最突出的是 MonolithIC 3D 首席執(zhí)行官Zvi Or-Bach于2014 年的主張。
    的頭像 發(fā)表于 01-25 14:45 ?1144次閱讀
    <b class='flag-5'>摩爾定律</b>的終結(jié):芯片產(chǎn)業(yè)的下一個(gè)勝者法則是什么?

    集成電路制造的起源和發(fā)展

    摩爾定律的提出也推動了集成電路制造的快速發(fā)展。這一定律指出,集成電路中的晶體管數(shù)量每隔一段時(shí)間便會翻倍,促進(jìn)了芯片尺寸的不斷縮小和性能的不斷提升。
    發(fā)表于 01-10 16:58 ?2235次閱讀
    集成電路制造的起源和<b class='flag-5'>發(fā)展</b>

    中國團(tuán)隊(duì)公開“Big Chip”架構(gòu)能終結(jié)摩爾定律

    摩爾定律的終結(jié)——真正的摩爾定律,即晶體管隨著工藝的每次縮小而變得更便宜、更快——正在讓芯片制造商瘋狂。
    的頭像 發(fā)表于 01-09 10:16 ?844次閱讀
    中國團(tuán)隊(duì)公開“Big Chip”架構(gòu)能終結(jié)<b class='flag-5'>摩爾定律</b>?