0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于內(nèi)部微觀結(jié)構(gòu)優(yōu)化MOSFET的驅(qū)動性能

電子設(shè)計 ? 來源:電子工程網(wǎng) ? 作者:電子工程網(wǎng) ? 2021-03-07 10:47 ? 次閱讀

功率MOSFET具有開關(guān)速度快,導(dǎo)通電阻小等優(yōu)點,因此在開關(guān)電源,馬達控制等電子系統(tǒng)中的應(yīng)用越來越廣。通常在實際的設(shè)計過程中,電子工程師對其的驅(qū)動電路以及驅(qū)動電路的參數(shù)調(diào)整并不是十分關(guān)注,尤其是從來沒有基于MOSFET內(nèi)部的微觀結(jié)構(gòu)去考慮驅(qū)動電路的設(shè)計,導(dǎo)致在實際的應(yīng)用中,MOSFET產(chǎn)生一定的失效率。本文將討論這些細節(jié)的問題,從而優(yōu)化MOSFET的驅(qū)動性能,提高整個系統(tǒng)的可靠性。

功率MOSFET的柵極模型

通常從外部來看,MOSFET是一個獨立的器件,事實上,在其內(nèi)部,由許多個單元(小的MOSFET)并聯(lián)組成,圖1(a)為AOT460內(nèi)部顯微結(jié)構(gòu)圖,其內(nèi)部的柵極等效模型如圖1(b)所示。MOSFET的結(jié)構(gòu)確定了其柵極電路為RC網(wǎng)絡(luò)

圖1:AOT460顯微結(jié)構(gòu)圖及柵極等效模型。

在MOSFET關(guān)斷過程中,MOSFET的柵極電壓VGS下降,從其等效模型可以得出,在晶元邊緣的單元首先達到柵極關(guān)斷電壓VTH而先關(guān)斷,中間的單元由于RC網(wǎng)絡(luò)的延遲作用而滯后達到柵極關(guān)斷電壓VTH而后關(guān)斷。

圖2:MOSFET關(guān)斷時的電流分布。

如果MOSFET所加的負載為感性負載,由于電感電流不能突變,導(dǎo)致流過MOSFET的電流向晶元的中間流動,如圖2所示。這樣就會造成MOSFET局部單元過熱而導(dǎo)致MOSFET局部單元損壞。如果加快MOSFET的關(guān)斷速度,以盡量讓MOSFET快速關(guān)斷,不讓能量產(chǎn)生集聚點,這樣就不會因局部單元過熱而損壞MOSFET。注意到:MOSFET的關(guān)斷過程是一個由穩(wěn)態(tài)向非穩(wěn)態(tài)過渡的過程,與此相反,MOSFET在開通時,由于負載的電流是隨著單元的逐漸開通而不斷增加的,因此是一個向穩(wěn)態(tài)過渡的過程,不會出現(xiàn)關(guān)斷時產(chǎn)生的能量集聚點。

因此,MOSFET在關(guān)斷時應(yīng)提供足夠的放電電流讓其快速關(guān)斷,這樣做不僅是為了提高開關(guān)速度而降低開關(guān)損耗,同時也是為了讓非穩(wěn)態(tài)過程盡量短,不至產(chǎn)生局部過熱點。

功率MOSFET熱不穩(wěn)定性

圖3:MOSFET的轉(zhuǎn)移特性。

圖3為MOSFET處于飽和區(qū)時漏極電流ID與柵極電壓VGS的關(guān)系曲線即轉(zhuǎn)移特性,用公式可表示為:

其中,

,對于特定的MOSFET,K為常數(shù)。因此,MOSFET處于飽和狀態(tài)時ID與VGS是平方的關(guān)系。

由圖3可知,當(dāng)MOSFET處于飽和區(qū)并且IDID0時,ID隨溫度的變化是負溫度系數(shù)。因為MOSFET是由很多的小的單元組成,當(dāng)ID

應(yīng)用實例

圖4是電動車控制器的兩種驅(qū)動MOSFET管AOT460驅(qū)動電路,分立器件驅(qū)動時,PWM在上橋臂,直接用MC33035驅(qū)動時,PWM在下橋臂。

圖4:AOT460驅(qū)動電路。

圖4(a)當(dāng)MOSFET管AOT460關(guān)斷時,柵極通過Q5直接放電。圖4(b)驅(qū)動電路中,當(dāng)MOSFET管AOT460關(guān)斷時,柵極電流通過電阻R6和MC33035的下驅(qū)動對地放電。由于MOSFET管AOT460在關(guān)斷時電流迅速減小,會在PCB電流檢測電阻的寄生電感上產(chǎn)生感應(yīng)電勢,感應(yīng)電勢的大小為Ldi/dt,方向如圖紅線所示。這樣會使MOSFET管AOT460的源極和MC33035驅(qū)動的參考電位發(fā)生相對變化,這種變化降低了MC33035相對于MOSFET管AOT460源極的驅(qū)動電壓,從而降低了驅(qū)動能力,使關(guān)斷速度變慢。

兩種電路的關(guān)斷波形如圖5所示。在圖5(b)中,當(dāng)VGS低于米勒平臺之后,電阻R6兩端的電壓,即圖5(b)中CH1和CH3的電位差變小,由于反電勢的影響,驅(qū)動線路已經(jīng)幾乎不能通過電阻R6給柵極提供放電電流,導(dǎo)致MOSFET的關(guān)斷變慢。(注:測試波形時探頭的地線均夾在MOSFET的源極)

圖5:AOT460驅(qū)動波形。

圖6:AOT460快速和慢速開關(guān)熱成像圖。

圖6為AOT460在同一應(yīng)用中快速開關(guān)和慢速開關(guān)情況下的熱成像照片??梢钥闯觯诼匍_關(guān)情況下MOSFET的局部溫度要高于快速開關(guān)情況下的溫度,過慢的開關(guān)速度會導(dǎo)致MOSFET因局部溫度過高而提前失效。

本文小結(jié)

①過慢的開關(guān)速度增加MOSFET的開關(guān)損耗,同時由于柵極RC網(wǎng)絡(luò)延遲和MOSFET本身的熱不穩(wěn)定性產(chǎn)生局部過熱,使MOSFET提前失效。

②過快的開通速度產(chǎn)生較大開通的浪涌電流以及開關(guān)振鈴及電壓尖峰。

③設(shè)計驅(qū)動線路和PCB布線時,減小主回路PCB和電流檢測電阻的寄生電感對開關(guān)波形的影響,布線時應(yīng)使大電流環(huán)路盡量小并且使用較寬的走線。

這人:gt

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    147

    文章

    7164

    瀏覽量

    213303
  • 開關(guān)電源
    +關(guān)注

    關(guān)注

    6463

    文章

    8337

    瀏覽量

    482054
  • 驅(qū)動電路
    +關(guān)注

    關(guān)注

    153

    文章

    1530

    瀏覽量

    108525
收藏 人收藏

    評論

    相關(guān)推薦

    低壓超級接面結(jié)構(gòu)優(yōu)化MOSFET性能

    采用超級接面結(jié)構(gòu)設(shè)計不僅可克服現(xiàn)有功率MOSFET結(jié)構(gòu)的缺點,亦能達到低RDS(on)、低QG和低QGD等特性
    發(fā)表于 12-08 10:28 ?1916次閱讀
    低壓超級接面<b class='flag-5'>結(jié)構(gòu)</b><b class='flag-5'>優(yōu)化</b><b class='flag-5'>MOSFET</b><b class='flag-5'>性能</b>

    基于MOSFET內(nèi)部結(jié)構(gòu)設(shè)計優(yōu)化驅(qū)動電路

    ,尤其是從來沒有基于MOSFET內(nèi)部微觀結(jié)構(gòu)去考慮驅(qū)動電路的設(shè)計,導(dǎo)致在實際的應(yīng)用中,MOSFET
    發(fā)表于 09-27 11:25

    功率MOSFET結(jié)構(gòu)及特點

    柵極(Gate),漏極(Drain)和源極(Source)。功率MOSFET為電壓型控制器件,驅(qū)動電路簡單,驅(qū)動的功率小,而且開關(guān)速度快,具有高的工作頻率。常用的MOSFET
    發(fā)表于 10-10 10:58

    【羅姆SiC-MOSFET 試用體驗連載】SiC MOSFET元器件性能研究

    失效模式等。項目計劃①根據(jù)文檔,快速認(rèn)識評估板的電路結(jié)構(gòu)和功能;②準(zhǔn)備元器件,相同耐壓的Si-MOSFET和業(yè)內(nèi)3家SiC-MOSFET③項目開展,按時間計劃實施,④項目調(diào)試,優(yōu)化,比
    發(fā)表于 04-24 18:09

    優(yōu)化電動汽車的結(jié)構(gòu)性能

    優(yōu)化電動汽車的結(jié)構(gòu)性能以提高效率和安全性迅速增長的全球電動汽車(EV)市場預(yù)計到2027年將達到8028億美元。在電池和高壓電子設(shè)備的驅(qū)動下,電動汽車的運行和維護成本往往低于傳統(tǒng)汽車,幾乎不會產(chǎn)生
    發(fā)表于 09-17 08:10

    永磁驅(qū)動電機接線盒結(jié)構(gòu)優(yōu)化性能分析_丁樹業(yè)

    永磁驅(qū)動電機接線盒結(jié)構(gòu)優(yōu)化性能分析_丁樹業(yè)
    發(fā)表于 01-08 13:49 ?0次下載

    基于AOT460和MC33035優(yōu)化驅(qū)動電路

    從來沒有基于MOSFET內(nèi)部微觀結(jié)構(gòu)去考慮驅(qū)動電路的設(shè)計,導(dǎo)致在實際的應(yīng)用中,MOSFET產(chǎn)生
    發(fā)表于 09-04 14:31 ?47次下載
    基于AOT460和MC33035<b class='flag-5'>優(yōu)化</b>的<b class='flag-5'>驅(qū)動</b>電路

    SiC MOSFET驅(qū)動設(shè)計要求及應(yīng)用

    如何驅(qū)動碳化硅MOSFET優(yōu)化高功率系統(tǒng)的性能和可靠性
    的頭像 發(fā)表于 08-20 01:10 ?8669次閱讀

    基于SiC材料的MOSFET性能及SiC MOSFET驅(qū)動設(shè)計要求

    如何驅(qū)動碳化硅MOSFET優(yōu)化高功率系統(tǒng)的性能和可靠性
    的頭像 發(fā)表于 08-02 01:20 ?5426次閱讀

    什么是MOSFET,MOSFET內(nèi)部結(jié)構(gòu)原理

    功率MOSFET為多單元集成結(jié)構(gòu),如IR 的HEXFET采用六邊形單元;西門子Siemens的SIPMOSFET采用正方形單元;摩托羅拉公司Motorola的TMOS采用矩形單元按品字形排列
    發(fā)表于 10-07 10:39 ?907次閱讀

    SiC MOSFET結(jié)構(gòu)及特性

    SiC功率MOSFET內(nèi)部晶胞單元的結(jié)構(gòu),主要有二種:平面結(jié)構(gòu)和溝槽結(jié)構(gòu)。平面SiC MOSFET
    發(fā)表于 02-16 09:40 ?4363次閱讀
    SiC <b class='flag-5'>MOSFET</b>的<b class='flag-5'>結(jié)構(gòu)</b>及特性

    MOSFET和IGBT內(nèi)部結(jié)構(gòu)與應(yīng)用

    MOSFET和IGBT內(nèi)部結(jié)構(gòu)不同,決定了其應(yīng)用領(lǐng)域的不同。
    的頭像 發(fā)表于 11-03 14:53 ?1035次閱讀
    <b class='flag-5'>MOSFET</b>和IGBT<b class='flag-5'>內(nèi)部結(jié)構(gòu)</b>與應(yīng)用

    常用的MOSFET驅(qū)動電路結(jié)構(gòu)設(shè)計

    常用的MOSFET驅(qū)動電路結(jié)構(gòu)如圖1所示,驅(qū)動信號經(jīng)過圖騰柱放大后,經(jīng)過一個驅(qū)動電阻Rg給MOSFET
    發(fā)表于 01-22 18:09 ?1527次閱讀
    常用的<b class='flag-5'>MOSFET</b><b class='flag-5'>驅(qū)動</b>電路<b class='flag-5'>結(jié)構(gòu)</b>設(shè)計

    驅(qū)動電流對MOSFET性能有什么影響

    驅(qū)動電流對MOSFET(金屬氧化物半導(dǎo)體場效應(yīng)晶體管)性能有著顯著的影響。MOSFET作為現(xiàn)代電子系統(tǒng)中常用的開關(guān)元件,其性能直接決定了系統(tǒng)
    的頭像 發(fā)表于 07-24 16:27 ?594次閱讀

    焊點的微觀結(jié)構(gòu)與機械性能

    焊點的微觀結(jié)構(gòu)與機械性能之間存在著緊密的聯(lián)系,如冷卻速度、蠕變與疲勞性能,以及無鉛合金特性就對焊點性能有較大的影響。以下是一些分析和進一步闡
    的頭像 發(fā)表于 11-01 09:19 ?136次閱讀