隨著現(xiàn)代圖像處理和人工智能技術(shù)的快速發(fā)展,不少學(xué)者嘗試講CV應(yīng)用到教學(xué)領(lǐng)域,能夠代替老師去閱卷,將老師從繁雜勞累的閱卷中解放出來(lái),從而進(jìn)一步有效的推動(dòng)教學(xué)質(zhì)量上一個(gè)臺(tái)階。
傳統(tǒng)的人工閱卷,工作繁瑣,效率低下,進(jìn)度難以控制且容易出現(xiàn)試卷遺漏未改、登分失誤等現(xiàn)象。
現(xiàn)代的“機(jī)器閱卷”,工作便捷、效率高、易操作,只需要一個(gè)相機(jī)(手機(jī)),拍照即可獲取成績(jī),可以導(dǎo)入Excel表格便于存檔管理。
下面我們從代碼實(shí)現(xiàn)的角度來(lái)解釋一下我們這個(gè)簡(jiǎn)易答題卡識(shí)別系統(tǒng)的工作原理。
第一步,導(dǎo)入工具包及一系列的預(yù)處理
import numpy as np
import argparse
import imutils
import cv2
# 設(shè)置參數(shù)
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", defaul)
args = vars(ap.parse_args())
# 正確答案
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1} #
def order_points(pts):
# 一共4個(gè)坐標(biāo)點(diǎn)
rect = np.zeros((4, 2), dtype = "float32")
# 按順序找到對(duì)應(yīng)坐標(biāo)0,1,2,3分別是 左上,右上,右下,左下
# 計(jì)算左上,右下
s = pts.sum(axis = 1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# 計(jì)算右上和左下
diff = np.diff(pts, axis = 1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
# 獲取輸入坐標(biāo)點(diǎn)
rect = order_points(pts)
(tl, tr, br, bl) = rect
# 計(jì)算輸入的w和h值
widthA = np.sqrt(((br[0]-bl[0])** 2) + ((br[1]-bl[1])**2))
widthB = np.sqrt(((tr[0] -tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0]-br[0])**2)+((tr[1]-br[1])**2))
heightB = np.sqrt(((tl[0]-bl[0])**2)+((tl[1]-bl[1])**2))
maxHeight = max(int(heightA), int(heightB))
# 變換后對(duì)應(yīng)坐標(biāo)位置
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype = "float32")
# 計(jì)算變換矩陣
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped # 返回變換后結(jié)果
def sort_contours(cnts, metho):
reverse = False
i = 0
if method == "right-to-left" or method == "bottom-to-top":
reverse = True
if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
boundingBoxes = [cv2.boundingRect(c) for c in cnts]
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b: b[1][i], reverse=reverse))
return cnts, boundingBoxes
def cv_show(name,img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
image = cv2.imread(args["image"])
contours_img = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 75, 200)
# 輪廓檢測(cè)
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[1]
cv2.drawContours(contours_img,cnts,-1,(0,0,255),3)
docCnt = None
# 確保檢測(cè)到了
if len(cnts) > 0:
# 根據(jù)輪廓大小進(jìn)行排序
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts: # 遍歷每一個(gè)輪廓
# 近似
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
# 準(zhǔn)備做透視變換
if len(approx) == 4:
docCnt = approx
break
# 執(zhí)行透視變換
warped = four_point_transform(gray, docCnt.reshape(4, 2))
thresh = cv2.threshold(warped, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
thresh_Contours = thresh.copy()
# 找到每一個(gè)圓圈輪廓
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[1]
cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3)
questionCnts = []
for c in cnts:# 遍歷
# 計(jì)算比例和大小
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
# 根據(jù)實(shí)際情況指定標(biāo)準(zhǔn)
if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
questionCnts.append(c)
# 按照從上到下進(jìn)行排序
questionCnts = sort_contours(questionCnts,
metho)[0]
correct = 0
# 每排有5個(gè)選項(xiàng)
for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):
cnts = sort_contours(questionCnts[i:i + 5])[0]
bubbled = None
for (j, c) in enumerate(cnts): # 遍歷每一個(gè)結(jié)果
# 使用mask來(lái)判斷結(jié)果
mask = np.zeros(thresh.shape, dtyp)
cv2.drawContours(mask, [c], -1, 255, -1) #-1表示填充
# 通過(guò)計(jì)算非零點(diǎn)數(shù)量來(lái)算是否選擇這個(gè)答案
mask = cv2.bitwise_and(thresh, thresh, mask=mask)
total = cv2.countNonZero(mask)
# 通過(guò)閾值判斷
if bubbled is None or total > bubbled[0]:
bubbled = (total, j)
# 第二步,與正確答案進(jìn)行對(duì)比
color = (0, 0, 255)
k = ANSWER_KEY[q]
# 判斷正確
if k == bubbled[1]:
color = (0, 255, 0)
correct += 1
cv2.drawContours(warped, [cnts[k]], -1, color, 3) #繪圖
#正確率的文本顯示
score = (correct / 5.0) * 100
print("[INFO] score: {:.2f}%".format(score))
cv2.putText(warped, "{:.2f}%".format(score), (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow("Input", image)
cv2.imshow("Output", warped)
cv2.waitKey(0)
本文由博客一文多發(fā)平臺(tái) OpenWrite 發(fā)布!
審核編輯 黃昊宇
-
圖像處理
+關(guān)注
關(guān)注
27文章
1294瀏覽量
56799 -
人工智能
+關(guān)注
關(guān)注
1792文章
47387瀏覽量
238900 -
python
+關(guān)注
關(guān)注
56文章
4798瀏覽量
84798
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論