0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何從龐大的客戶車隊(duì)中獲取訓(xùn)練數(shù)據(jù),以訓(xùn)練其自動(dòng)駕駛神經(jīng)網(wǎng)絡(luò)

倩倩 ? 來(lái)源:半導(dǎo)體投資聯(lián)盟 ? 2020-04-17 09:36 ? 次閱讀

據(jù)外媒Electrek報(bào)道,特斯拉于近日申請(qǐng)了一項(xiàng)專利,即如何從龐大的客戶車隊(duì)中獲取訓(xùn)練數(shù)據(jù),以訓(xùn)練其自動(dòng)駕駛神經(jīng)網(wǎng)絡(luò)。

據(jù)悉,特斯拉人工智能和自動(dòng)駕駛軟件負(fù)責(zé)人Andrej Karpathy是該專利的唯一發(fā)明人。Karpathy指出了在應(yīng)用程序中為深度學(xué)習(xí)培訓(xùn)收集數(shù)據(jù)的難點(diǎn):“用于自動(dòng)駕駛等應(yīng)用的深度學(xué)習(xí)系統(tǒng)是通過(guò)訓(xùn)練機(jī)器學(xué)習(xí)模型來(lái)開(kāi)發(fā)的。通常深度學(xué)習(xí)系統(tǒng)的性能在一定程度上受制于訓(xùn)練集的質(zhì)量。在大多數(shù)情況下,在收集、管理和注釋培訓(xùn)數(shù)據(jù)方面需要投入大量資源,創(chuàng)建訓(xùn)練集的工作因此很重要且繁瑣。此外,通常很難為機(jī)器學(xué)習(xí)模型需要改進(jìn)的特定用例收集數(shù)據(jù)?!?/p>

值得一提的是,特斯拉開(kāi)發(fā)自動(dòng)駕駛系統(tǒng)的方法與大多數(shù)汽車公司大相徑庭。大多數(shù)汽車公司使用相對(duì)較小的測(cè)試車輛車隊(duì)來(lái)收集數(shù)據(jù)和測(cè)試其系統(tǒng),而特斯拉則利用配備了一系列傳感器的數(shù)十萬(wàn)客戶車輛來(lái)收集道路和駕駛數(shù)據(jù),并在“陰影模式”下測(cè)試自動(dòng)駕駛系統(tǒng),因此,車隊(duì)收集的這些數(shù)據(jù)對(duì)于特斯拉訓(xùn)練神經(jīng)網(wǎng)絡(luò)進(jìn)行自動(dòng)駕駛是非常有價(jià)值的。

Karpathy在專利中提到,“隨著機(jī)器學(xué)習(xí)模型變得越來(lái)越復(fù)雜,例如更深層次的神經(jīng)網(wǎng)絡(luò),大型訓(xùn)練數(shù)據(jù)集的必要性也相應(yīng)增加。與較淺的神經(jīng)網(wǎng)絡(luò)相比,這些較深的神經(jīng)網(wǎng)絡(luò)可能需要更多的訓(xùn)練實(shí)例,以確保其通用性?!?/p>

因此,工程師解釋了其專利方法,即在傳輸潛在培訓(xùn)數(shù)據(jù)之前,先對(duì)數(shù)據(jù)源進(jìn)行分類。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2551

    文章

    51192

    瀏覽量

    754356
  • 特斯拉
    +關(guān)注

    關(guān)注

    66

    文章

    6317

    瀏覽量

    126624
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8423

    瀏覽量

    132744
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    LSTM神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備方法

    LSTM(Long Short-Term Memory,長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備方法是一個(gè)關(guān)鍵步驟,它直接影響到模型的性能和效果。以下是一些關(guān)于LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:08 ?665次閱讀

    Python自動(dòng)訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)

    人工神經(jīng)網(wǎng)絡(luò)(ANN)是機(jī)器學(xué)習(xí)中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過(guò)多層節(jié)點(diǎn)(神經(jīng)元)之間的連接和權(quán)重調(diào)整來(lái)學(xué)習(xí)和解決問(wèn)題。Python由于強(qiáng)大的庫(kù)支持(如Tenso
    的頭像 發(fā)表于 07-19 11:54 ?368次閱讀

    如何使用經(jīng)過(guò)訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型

    使用經(jīng)過(guò)訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型是一個(gè)涉及多個(gè)步驟的過(guò)程,包括數(shù)據(jù)準(zhǔn)備、模型加載、預(yù)測(cè)執(zhí)行以及后續(xù)優(yōu)化等。
    的頭像 發(fā)表于 07-12 11:43 ?1031次閱讀

    脈沖神經(jīng)網(wǎng)絡(luò)怎么訓(xùn)練

    脈沖神經(jīng)網(wǎng)絡(luò)(SNN, Spiking Neural Network)的訓(xùn)練是一個(gè)復(fù)雜但充滿挑戰(zhàn)的過(guò)程,它模擬了生物神經(jīng)元通過(guò)脈沖(或稱為尖峰)進(jìn)行信息傳遞的方式。以下是對(duì)脈沖神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-12 10:13 ?638次閱讀

    BP神經(jīng)網(wǎng)絡(luò)樣本的獲取方法

    訓(xùn)練樣本是至關(guān)重要的。 數(shù)據(jù)收集 數(shù)據(jù)收集是構(gòu)建BP神經(jīng)網(wǎng)絡(luò)模型的第一步。根據(jù)研究領(lǐng)域和應(yīng)用場(chǎng)景的不同,數(shù)據(jù)來(lái)源可以分為以下幾種: 1.1
    的頭像 發(fā)表于 07-11 10:50 ?617次閱讀

    20個(gè)數(shù)據(jù)可以訓(xùn)練神經(jīng)網(wǎng)絡(luò)

    當(dāng)然可以,20個(gè)數(shù)據(jù)點(diǎn)對(duì)于訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)說(shuō)可能非常有限,但這并不意味著它們不能用于訓(xùn)練。實(shí)際上,神經(jīng)網(wǎng)絡(luò)可以
    的頭像 發(fā)表于 07-11 10:29 ?948次閱讀

    怎么對(duì)神經(jīng)網(wǎng)絡(luò)重新訓(xùn)練

    發(fā)生變化,導(dǎo)致神經(jīng)網(wǎng)絡(luò)的泛化能力下降。為了保持神經(jīng)網(wǎng)絡(luò)的性能,需要對(duì)進(jìn)行重新訓(xùn)練。本文將詳細(xì)介紹重新訓(xùn)練
    的頭像 發(fā)表于 07-11 10:25 ?473次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和訓(xùn)練過(guò)程

    BP神經(jīng)網(wǎng)絡(luò),全稱為反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network),是一種在機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘和模式識(shí)別等領(lǐng)域廣泛應(yīng)用的人工神經(jīng)網(wǎng)絡(luò)模型。
    的頭像 發(fā)表于 07-10 15:07 ?4690次閱讀
    BP<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的基本結(jié)構(gòu)和<b class='flag-5'>訓(xùn)練</b>過(guò)程

    神經(jīng)網(wǎng)絡(luò)如何用無(wú)監(jiān)督算法訓(xùn)練

    神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的重要組成部分,訓(xùn)練方式多樣,其中無(wú)監(jiān)督學(xué)習(xí)是一種重要的訓(xùn)練策略。無(wú)監(jiān)督學(xué)習(xí)旨在從未標(biāo)記的數(shù)據(jù)中發(fā)現(xiàn)
    的頭像 發(fā)表于 07-09 18:06 ?833次閱讀

    如何利用Matlab進(jìn)行神經(jīng)網(wǎng)絡(luò)訓(xùn)練

    ,使得神經(jīng)網(wǎng)絡(luò)的創(chuàng)建、訓(xùn)練和仿真變得更加便捷。本文將詳細(xì)介紹如何利用Matlab進(jìn)行神經(jīng)網(wǎng)絡(luò)訓(xùn)練,包括網(wǎng)絡(luò)創(chuàng)建、
    的頭像 發(fā)表于 07-08 18:26 ?1920次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    、訓(xùn)練過(guò)程以及應(yīng)用場(chǎng)景。 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 卷積神經(jīng)網(wǎng)絡(luò)的定義 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋深度學(xué)習(xí)模型,核心思想是利用卷積
    的頭像 發(fā)表于 07-03 09:15 ?429次閱讀

    如何訓(xùn)練和優(yōu)化神經(jīng)網(wǎng)絡(luò)

    神經(jīng)網(wǎng)絡(luò)是人工智能領(lǐng)域的重要分支,廣泛應(yīng)用于圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等多個(gè)領(lǐng)域。然而,要使神經(jīng)網(wǎng)絡(luò)在實(shí)際應(yīng)用取得良好效果,必須進(jìn)行有效的訓(xùn)練和優(yōu)化。本文將從
    的頭像 發(fā)表于 07-01 14:14 ?483次閱讀

    助聽(tīng)器降噪神經(jīng)網(wǎng)絡(luò)模型

    40 dB)更改為 -5 至 25 dB,包含負(fù) SNR 并限制總范圍。為了覆蓋更細(xì)粒度的 SNR 分布,SNR 級(jí)別的數(shù)量 5 增加到 30。所有其他參數(shù)保持不變。 500 小時(shí)的數(shù)據(jù)集分為
    發(fā)表于 05-11 17:15

    利用神經(jīng)網(wǎng)絡(luò)對(duì)腦電圖(EEG)降噪

    數(shù)據(jù)與干凈的EEG數(shù)據(jù)構(gòu)成訓(xùn)練數(shù)據(jù),并且分成訓(xùn)練、驗(yàn)證和測(cè)試數(shù)據(jù)集。 繪制有噪聲EEG
    發(fā)表于 04-30 20:40

    未來(lái)已來(lái),多傳感器融合感知是自動(dòng)駕駛破局的關(guān)鍵

    巨大的進(jìn)展;自動(dòng)駕駛開(kāi)始摒棄手動(dòng)編碼規(guī)則和機(jī)器學(xué)習(xí)模型的方法,轉(zhuǎn)向全面采用端到端的神經(jīng)網(wǎng)絡(luò)AI系統(tǒng),它能模仿學(xué)習(xí)人類司機(jī)的駕駛,遇到場(chǎng)景直接輸入傳感器數(shù)據(jù),再直接輸出轉(zhuǎn)向、制動(dòng)和加速信
    發(fā)表于 04-11 10:26