0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深入了解一下,到底什么是大數據

智能感知與物聯(lián)網技術研究所 ? 來源:通信信號處理研究所 ? 2019-12-06 15:39 ? 次閱讀

導 讀

獲取數據、存儲數據、分析數據,這一系列的行為,都不算新奇。我們每天都在用電腦,每天都在干這個事。但是,同樣的行為,放在大數據身上,就行不通了。換言之,傳統(tǒng)個人電腦,傳統(tǒng)常規(guī)軟件,無力應對的數據級別,才叫“大數據”。

近年來,大數據這個詞的熱度很高,受到公眾的廣泛關注。

對于很多人來說,當他第一次聽到“大數據”這個詞,會自然而然從字面上去理解——認為大數據就是大量的數據,大數據技術就是大量數據的存儲技術。

但事實上,它并不只是一項存儲技術,而是一系列和海量數據相關的抽取、集成、管理、分析、解釋技術。大數據系統(tǒng),是一個龐大的框架系統(tǒng)。

更進一步來說,大數據是一種全新的思維方式和商業(yè)模式。

圖片來自網絡

今天這篇文章,就讓我們來深入了解一下,到底什么是大數據。

大數據的定義

首先,我們看看大數據的定義。

行業(yè)里對大數據的定義有很多,有廣義的定義,也有狹義的定義。

廣義的定義,有點哲學味道——大數據,是指物理世界到數字世界的映射和提煉。通過發(fā)現(xiàn)其中的數據特征,從而做出提升效率的決策行為。

狹義的定義,是技術工程師給的——大數據,是通過獲取、存儲、分析,從大容量數據中挖掘價值的一種全新的技術架構。

相比較而言,狹義定義更好理解一些。

大家注意,關鍵詞我都在上面原句加粗了:

要做什么?——獲取數據、存儲數據、分析數據

對誰做?——大容量數據

目的是什么?——挖掘價值

獲取數據、存儲數據、分析數據,這一系列的行為,都不算新奇。我們每天都在用電腦,每天都在干這個事。

例如,每月的月初,考勤管理員會獲取每個員工的考勤信息,錄入Excel表格,然后存在電腦里,統(tǒng)計分析有多少人遲到、缺勤,然后扣TA工資。

但是,同樣的行為,放在大數據身上,就行不通了。換言之,傳統(tǒng)個人電腦,傳統(tǒng)常規(guī)軟件,無力應對的數據級別,才叫“大數據”。

大數據,到底有多大?

我們傳統(tǒng)的個人電腦,處理的數據,是GB/TB級別。例如,我們的硬盤,現(xiàn)在通常是1TB/2TB/4TB的容量。

TB、GB、MB、KB的關系,大家應該都很熟悉了:

1 KB = 1024 B (KB - kilobyte)

1 MB = 1024 KB (MB - megabyte)

1 GB = 1024 MB (GB - gigabyte)

1 TB = 1024 GB (TB - terabyte)

而大數據是什么級別呢?PB/EB級別。

大部分人都沒聽過。其實也就是繼續(xù)乘以1024:

1 PB = 1024 TB (PB - petabyte)

1 EB = 1024 PB (EB - exabyte)

只是看這幾個字母的話,貌似不是很直觀。我來舉個例子吧。

1TB,只需要一塊硬盤可以存儲。容量大約是20萬張照片或20萬首MP3音樂,或者是20萬部電子書。

普通硬盤

1PB,需要大約2個機柜的存儲設備。容量大約是2億張照片或2億首MP3音樂。如果一個人不停地聽這些音樂,可以聽1900年。。。

2個機柜

1EB,需要大約2000個機柜的存儲設備。如果并排放這些機柜,可以連綿1.2公里那么長。如果擺放在機房里,需要21個標準籃球場那么大的機房,才能放得下。

21個籃球場

阿里、百度、騰訊這樣的互聯(lián)網巨頭,數據量據說已經接近EB級。

阿里數據中心內景

EB還不是最大的。目前全人類的數據量,是ZB級。

1 ZB = 1024 EB (ZB - zettabyte)

2011年,全球被創(chuàng)建和復制的數據總量是1.8ZB。

而到2020年,全球電子設備存儲的數據,將達到35ZB。如果建一個機房來存儲這些數據,那么,這個機房的面積將比42個鳥巢體育場還大。

數據量不僅大,增長還很快——每年增長50%。也就是說,每兩年就會增長一倍。

目前的大數據應用,還沒有達到ZB級,主要集中在PB/EB級別。

數據的來源

數據的增長,為什么會如此之快?

說到這里,就要回顧一下人類社會數據產生的幾個重要階段。

大致來說,是三個重要的階段。

第一個階段,就是計算機被發(fā)明之后的階段。尤其是數據庫被發(fā)明之后,使得數據管理的復雜度大大降低。各行各業(yè)開始產生了數據,從而被記錄在數據庫中。這時的數據,以結構化數據為主(待會解釋什么是“結構化數據”)。數據的產生方式,也是被動的。

世界上第一臺通用計算機-ENIAC

第二個階段,是伴隨著互聯(lián)網2.0時代出現(xiàn)的?;ヂ?lián)網2.0的最重要標志,就是用戶原創(chuàng)內容。隨著互聯(lián)網和移動通信設備的普及,人們開始使用博客、facebook、youtube這樣的社交網絡,從而主動產生了大量的數據。

第三個階段,是感知式系統(tǒng)階段。隨著物聯(lián)網的發(fā)展,各種各樣的感知層節(jié)點開始自動產生大量的數據,例如遍布世界各個角落的傳感器、攝像頭。

經過了“被動-主動-自動”這三個階段的發(fā)展,最終導致了人類數據總量的極速膨脹。

大數據的4個V

行業(yè)里對大數據的特點,概括為4個V。

前面所說的龐大數據體量,就是Volume(海量化)。除了Volume之外,剩下三個,分別是Variety、Velocity、Value。

我們一個一個來介紹。

Variety(多樣化)

數據的形式是多種多樣的,包括數字(價格、交易數據、體重、人數等)、文本(郵件、網頁等)、圖像、音頻、視頻、位置信息(經緯度、海拔等),等等,都是數據。

數據又分為結構化數據和非結構化數據。

從名字可以看出,結構化數據,是指可以用預先定義的數據模型表述,或者,可以存入關系型數據庫的數據。

結構化數據

例如,一個班級所有人的年齡、一個超市所有商品的價格,這些都是結構化數據。

而網頁文章、郵件內容、圖像、音頻、視頻等,都屬于非結構話數據。

在互聯(lián)網領域里,非結構化數據的占比已經超過整個數據量的80%。

大數據,就符合這樣的特點:數據形式多樣化,且非結構化數據占比高。

Velocity(時效性)

大數據還有一個特點,那就是時效性。從數據的生成到消耗,時間窗口非常小。數據的變化速率,還有處理過程,越來越快。例如變化速率,從以前的按天變化,變成現(xiàn)在的按秒甚至毫秒變化。

我們還是用數字來說話:

就在剛剛過去的這一分鐘,數據世界里發(fā)生了什么?

Email:2.04億封被發(fā)出

Google:200萬次搜索請求被提交

Youtube:2880分鐘的視頻被上傳

Facebook:69.5萬條狀態(tài)被更新

Twitter:98000條推送被發(fā)出

12306:1840張車票被賣出

……

怎么樣?是不是瞬息萬變?

Value(價值密度)

最后一個特點,就是價值密度。

大數據的數據量很大,但隨之帶來的,就是價值密度很低,數據中真正有價值的,只是其中的很少一部分。

例如通過監(jiān)控視頻尋找犯罪分子的相貌,也許幾TB的視頻文件,真正有價值的,只有幾秒鐘。

2014年美國波士頓爆炸案,現(xiàn)場調取了10TB的監(jiān)控數據(包括移動基站的通訊記錄,附近商店、加油站、報攤的監(jiān)控錄像以及志愿者提供的影像資料),最終找到了嫌疑犯的一張照片。

大數據的價值

剛才說到價值密度,也就說到了大數據的核心本質,那就是價值。

人類提出大數據、研究大數據的主要目的,就是為了挖掘大數據里面的價值。

大數據,究竟有什么價值?

早在1980年,著名未來學家阿爾文·托夫勒在他的著作《第三次浪潮》中,就明確提出:“數據就是財富”,并且,將大數據稱為“第三次浪潮的華彩樂章”。

第一次浪潮:農業(yè)階段,約1萬年前開始

第二次浪潮:工業(yè)階段,17世紀末開始

第三次浪潮:信息化階段,20世紀50年代后期開始

進入21世紀之后,隨著前面所說的第二第三階段的發(fā)展,移動互聯(lián)網崛起,存儲能力和云計算能力飛躍,大數據開始落地,也引起了越來越多的重視。

2012年的世界經濟論壇指出:“數據已經成為一種新的經濟資產類別,就像貨幣和黃金一樣”。這無疑將大數據的價值推到了前所未有的高度層面上。

如今,大數據應用開始走進我們的生活,影響我們的衣食住行。

滴滴的大數據殺熟,相信大家都有所耳聞

之所以大數據會有這么快的發(fā)展,就是因為越來越多的行業(yè)和企業(yè),開始認識到大數據的價值,開始試圖參與挖掘大數據的價值。

歸納來說,大數據的價值主要來自于兩個方面:

1 幫助企業(yè)了解用戶

大數據通過相關性分析,將客戶和產品、服務進行關系串聯(lián),對用戶的偏好進行定位,從而提供更精準、更有導向性的產品和服務,提升銷售業(yè)績。

典型的例子就是電商。

像阿里淘寶這樣的電子商務平臺,積累了大量的用戶購買數據。在早期的時候,這些數據都是累贅和負擔,存儲它們需要大量的硬件成本。但是,現(xiàn)在這些數據都是阿里最寶貴的財富。

通過這些數據,可以分析用戶行為,精準定位目標客群的消費特點、品牌偏好、地域分布,從而引導商家的運營管理、品牌定位、推廣營銷等。

大數據可以對業(yè)績產生直接影響。它的效率和準確性,遠遠超過傳統(tǒng)的用戶調研。

除了電商,包括能源、影視、證券、金融、農業(yè)、工業(yè)、交通運輸、公共事業(yè)等,都是大數據的用武之地。

2 幫助企業(yè)了解自己

除了幫助了解用戶之外,大數據還能幫助了解自己。

企業(yè)生產經營需要大量的資源,大數據可以分析和鎖定資源的具體情況,例如儲量分布和需求趨勢。這些資源的可視化,可以幫助企業(yè)管理者更直觀地了解企業(yè)的運作狀態(tài),更快地發(fā)現(xiàn)問題,及時調整運營策略,降低經營風險。

總而言之,“知己知彼,百戰(zhàn)百勝”。大數據,就是為決策服務的。

大數據和云計算

說到這里,我們要回答一個很多人心里都存在的疑惑——大數據和云計算之間,到底有什么關系?

可以這么解釋:數據本身是一種資產,而云計算,則是為挖掘資產價值提供合適的工具。

從技術上,大數據是依賴于云計算的。云計算里面的海量數據存儲技術、海量數據管理技術、分布式計算模型等,都是大數據技術的基礎。

云計算就像是挖掘機,大數據就是礦山。如果沒有云計算,大數據的價值就發(fā)揮不出來。

相反的,大數據的處理需求,也刺激了云計算相關技術的發(fā)展和落地。

也就是說,如果沒有大數據這座礦山,云計算這個挖掘機,很多強悍的功能都發(fā)展不起來。

套用一句老話——云計算和大數據,兩者是相輔相成的。

大數據和物聯(lián)網(5G

第二個問題,大數據和物聯(lián)網有什么關系?

物聯(lián)網就是“物與物互相連接的互聯(lián)網”。物聯(lián)網的感知層,產生了海量的數據,將會極大地促進大數據的發(fā)展。

同樣,大數據應用也發(fā)揮了物聯(lián)網的價值,反向刺激了物聯(lián)網的使用需求。越來越多的企業(yè),發(fā)覺能夠通過物聯(lián)網大數據獲得價值,就會愿意投資建設物聯(lián)網。

其實這個問題也可以進一步延伸為“大數據和5G之間的關系”。

即將到來的5G,通過提升連接速率,提升了“人聯(lián)網”的感知,也促進了人類主動創(chuàng)造數據。

另一方面,它更多是為“物聯(lián)網”服務的。包括低延時、海量終端連接等,都是物聯(lián)網場景的需求。

5G刺激物聯(lián)網的發(fā)展,而物聯(lián)網刺激大數據的發(fā)展。所有通信基礎設施的強大,都是為大數據崛起鋪平道路。

大數據的產業(yè)鏈

接下來再說說大數據的產業(yè)鏈。

大數據的產業(yè)鏈,和大數據的處理流程是緊密相關的。簡單來說,就是生產數據、聚合數據、分析數據、消費數據。

每個環(huán)節(jié),都有相應的角色玩家。如下圖:

從目前的情況來看,國外廠商在大數據產業(yè)占據了較大的份額,尤其是上游領域,基本上都是國外企業(yè)。國內IT企業(yè)相比而言,存在較大的差距。

大數據相關重點領域及企業(yè)(技術)

大數據的挑戰(zhàn)

說了那么多大數據的好話,并不代表大數據是完美的。

大數據也面臨著很多挑戰(zhàn)。

除了數據管理技術難度之外,大數據的最大挑戰(zhàn),就是安全。

數據是資產,也是隱私。沒有人愿意自己的隱私被暴露,所以,人們對自己的隱私保護越來越重視。政府也在不斷加強對公民隱私權的保護,出臺了很多法律。

在這種情況下,企業(yè)獲取用戶數據,就需要慎重考慮,是否符合倫理和法律。一旦違法,將付出極為沉重的代價。

此外,即使企業(yè)合法獲取數據,也要擔心是否會被惡意攻擊和竊取。這里面的風險也是不容忽視的。

除了安全之外,大數據還要面臨能耗等方面的問題。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 存儲技術
    +關注

    關注

    5

    文章

    737

    瀏覽量

    45813
  • 大數據
    +關注

    關注

    64

    文章

    8894

    瀏覽量

    137483

原文標題:看懂“大數據”,這一篇就夠了!

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網技術研究所】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    如何為不同的電機選擇合適的驅動芯片?納芯微帶你深入了解!

    在現(xiàn)代生活中,電機廣泛使用在家電產品、汽車電子、工業(yè)控制等眾多應用領域,每個電機的運轉都離不開合適的驅動芯片。納芯微提供豐富的電機驅動產品選擇,本期技術分享將重點介紹常見電機種類與感性負載應用,幫助大家更深入了解如何選擇合適的電機驅動芯片。
    的頭像 發(fā)表于 12-23 09:58 ?272次閱讀
    如何為不同的電機選擇合適的驅動芯片?納芯微帶你<b class='flag-5'>深入了解</b>!

    深入了解光伏逆變器測試系統(tǒng)

    的交流電(AC)。隨著太陽能發(fā)電的廣泛應用,確保光伏逆變器的可靠性和效率變得至關重要,這也使得光伏逆變器測試系統(tǒng)的作用愈發(fā)凸顯。 、光伏逆變器的工作原理 要深入理解光伏逆變器測試系統(tǒng)的必要性,首先需要了解逆變器的
    的頭像 發(fā)表于 10-24 14:59 ?198次閱讀
    <b class='flag-5'>深入了解</b>光伏逆變器測試系統(tǒng)

    基于Kepware的Hadoop大數據應用構建-提升數據價值利用效能

    背景 Hadoop是個由Apache基金會所開發(fā)的分布式系統(tǒng)基礎架構,它允許用戶在不需要深入了解分布式底層細節(jié)的情況,開發(fā)分布式程序。Hadoop充分利用集群的威力進行高速運算和存儲,特別適用于
    的頭像 發(fā)表于 10-08 15:12 ?164次閱讀
    基于Kepware的Hadoop<b class='flag-5'>大數據</b>應用構建-提升<b class='flag-5'>數據</b>價值利用效能

    深入了解PCI轉XMC載板轉接卡

    電子發(fā)燒友網站提供《深入了解PCI轉XMC載板轉接卡.docx》資料免費下載
    發(fā)表于 09-06 14:35 ?0次下載

    深入了解 MEMS 振蕩器 溫度補償 MEMS 振蕩器 TC-MO

    深入了解 MEMS 振蕩器/溫度補償 MEMS 振蕩器(TC-MO)-μPower MO1534/MO1569/MO1576/MO8021
    的頭像 發(fā)表于 07-30 16:38 ?531次閱讀
    <b class='flag-5'>深入了解</b> MEMS 振蕩器 溫度補償 MEMS 振蕩器 TC-MO

    深入了解表面貼裝晶體諧振器DSX1210A

    深入了解表面貼裝晶體諧振器DSX1210A
    的頭像 發(fā)表于 07-25 14:27 ?411次閱讀
    <b class='flag-5'>深入了解</b>表面貼裝晶體諧振器DSX1210A

    深入了解恒溫晶體振蕩器DC5032AS

    深入了解恒溫晶體振蕩器DC5032AS
    的頭像 發(fā)表于 07-25 10:37 ?317次閱讀
    <b class='flag-5'>深入了解</b>恒溫晶體振蕩器DC5032AS

    小熊派官網正式上線 可深入了解小熊派的各款開發(fā)套件

    我們?yōu)槊?b class='flag-5'>一款開發(fā)板打造個開源社區(qū),讓每位開發(fā)者都能在這里找到歸屬感和靈感。通過官網對硬件、軟件、案例和教程的開源,大家可以深入了解小熊派的各款開發(fā)套件。
    的頭像 發(fā)表于 06-13 08:42 ?922次閱讀
    小熊派官網正式上線 可<b class='flag-5'>深入了解</b>小熊派的各款開發(fā)套件

    深入了解IEEE協(xié)會:設備MAC地址申請指南

    在數字化浪潮中,設備之間的通信變得日益頻繁和重要。而在這個通信網絡中,每臺設備都需要個獨特的身份標識來幫助大家有效識別設備信息,那就是MAC地址。本篇內容,英利檢測將帶大家深入了解IEEE協(xié)會
    的頭像 發(fā)表于 05-09 17:20 ?566次閱讀
    <b class='flag-5'>深入了解</b>IEEE協(xié)會:設備MAC地址申請指南

    拆解FPGA芯片,帶你深入了解其原理

    拆解FPGA芯片,帶你深入了解其原理 現(xiàn)場可編程門陣列(FPGA)可以實現(xiàn)任意數字邏輯,從微處理器到視頻生成器或加密礦機,應俱全。FPGA由許多邏輯模塊組成,每個邏輯模塊通常由觸發(fā)器和邏輯功能
    發(fā)表于 04-17 11:07

    深入了解影響ZR執(zhí)行器性能的關鍵因素

    深入了解影響ZR執(zhí)行器性能的關鍵因素-速程精密 在工業(yè)自動化領域,ZR執(zhí)行器作為關鍵的終端設備,其性能的穩(wěn)定性對于整個自動化系統(tǒng)的運行至關重要。了解影響ZR執(zhí)行器性能的因素有助于更好地維護和優(yōu)化其
    的頭像 發(fā)表于 03-20 15:04 ?551次閱讀
    <b class='flag-5'>深入了解</b>影響ZR執(zhí)行器性能的關鍵因素

    行車記錄儀和應急啟動電源?“超級電容”了解一下

    行車記錄儀和應急啟動電源?“超級電容”了解一下應急啟動電源+超級電容高倍率鋰電的應急啟動電源,般都會附帶充電寶、照明等功能,生怕自己被冷落。而超級電容的優(yōu)勢恰恰是應急啟動電源最需要的,尤其對于北方
    的頭像 發(fā)表于 03-15 09:55 ?1272次閱讀
    行車記錄儀和應急啟動電源?“超級電容”<b class='flag-5'>了解</b><b class='flag-5'>一下</b>

    超級電容了解一下行車記錄儀和應急啟動電源?

    超級電容了解一下行車記錄儀和應急啟動電源?它們無例外都采用了“高倍率”鋰電池,特點是放電功率比普通鋰電高很多,缺點是比普通鋰電還要短命(充放電循環(huán)次數更低)。你以為它的結局就是“過勞死”嗎?不!從
    的頭像 發(fā)表于 03-11 08:59 ?1463次閱讀
    超級電容<b class='flag-5'>了解</b><b class='flag-5'>一下</b>行車記錄儀和應急啟動電源?

    S參數:深入了解與實際應用

    個無源二端口網絡為例,深入介紹S參數。信號在傳輸過程中會產生入射波和反射波,既有進入端口的信號也有從端口中出來的信號。
    的頭像 發(fā)表于 01-23 11:20 ?956次閱讀
    S參數:<b class='flag-5'>深入了解</b>與實際應用

    深入了解RAG技術

    這是任何RAG流程的最后步——基于我們仔細檢索的所有上下文和初始用戶查詢生成答案。最簡單的方法可能是將所有獲取到的上下文(超過某個相關性閾值的)連同查詢次性輸入給LLM。
    的頭像 發(fā)表于 01-17 11:36 ?3278次閱讀
    <b class='flag-5'>深入了解</b>RAG技術