摘要:介紹了一種單級功率因數校正(PFC)變換器,重點討論了變換器的主要設計。 關鍵詞:變換器;單級功率因數校正;設計
1??? 引言 ??? 為了減少對交流電網的諧波污染,國際上推出了一些限制電流諧波的標準,如IEC1000-3-2,它要求開關電源必須采取措施降低電流諧波含量。 ??? 為了使輸入電流諧波滿足要求,必須加入功率因數校正(PFC)。目前應用得最廣泛的是PFC級+DC/DC級的兩級方案,它們有各自的開關器件和控制電路。這種方案能夠獲得很好的性能,但它的缺點是電路復雜,成本高。 ??? 在單級功率因數校正變換器[1]中,PFC級和DC/DC級共用一個開關管和一套控制電路,在獲得穩(wěn)定輸出的同時實現功率因數校正。這種方案具有電路簡單、成本低的優(yōu)點,適用于小功率場合。本文介紹了一種單級PFC變換器的基本原理及其設計過程。 2??? 單級PFC變換器 ??? 單級PFC變換器的原理圖如圖1所示,是一種基于脈寬調制(PWM)的變換器。變換器的PFC級采用Boost電感電路,而DC/DC級采用雙管單端正激電路結構。
圖1??? 單 級 功 率 因 數 校 正 變 換 器 的 原 理 圖 ??? PWM集成芯片采用了UC3842,是一種電流型控制的專用芯片,具有電壓調整率高、外圍元器件少、工作頻率高、啟動電流小的特點。其輸出驅動信號通過隔直電容,連接在驅動變壓器原邊。驅動變壓器采用副邊雙繞組結構,得到兩路同相隔離的驅動信號,從而實現了DC/DC級的雙管驅動。 ??? 變換器的過流保護由電阻R9檢測到開關管的過流信號,封鎖UC3842的輸出信號,實現過流保護。電壓負反饋控制由電阻R12和R13獲得輸出電壓信號。 ??? 變換器的工作原理簡述如下:當變換器接通電源時,輸入交流電壓整流后的直流電壓經電阻R17降壓后,給UC3842提供啟動電壓。進入正常工作后,二次繞組N3提供UC3842的工作電壓(12V);繞組N2的高頻電壓經整流濾波,由TL431獲得偏差信號,經光耦隔離后反饋到UC3842,去控制開關管的導通與截止,實現穩(wěn)壓的目的。在一個開關周期Ts內,控制Boost電感工作在不連續(xù)導電模式(DCM)下,使得輸入電流波形自然跟隨輸入電壓波形,從而實現了功率因數校正。 3??? 變換器的設計 3.1??? EMI濾波器的設計 ??? EMI濾波器能有效地抑制電網噪聲,提高電子儀器、計算機和測控系統(tǒng)的抗干擾能力及可靠性[2]。單級PFC變換器的PFC級工作在不連續(xù)導電模式下,其輸入電流波形為脈動三角波,因此其前端需添加EMI濾波器以濾除高頻紋波。 ??? EMI濾波器電路如圖1所示,包括共模扼流圈(亦稱共模電感)和濾波電容。共模電感主要用來濾除共模干擾,其電感量與EMI濾波器的額定電流有關。本文中的單級PFC變換器的額定電流為1A,取共模電感值為15mH。濾波電容C11和C13主要濾除串模干擾,容量大致為0.01μF~0.47μF。C14和C15跨接在輸入端,并將電容器的中點接地,能有效抑制共模干擾,容量范圍是2200pF~0.1μF。 3.2??? 功率器件的選取 ??? 變換器的開關器件一般均選用功率場效應管(MOSFET),依據輸入最高電壓時輸出最大電流的要求來確定其電壓與電流等級,并預留有1.5~2倍的電壓和2~3倍的電流裕量。在單管變換器中,開關器件的電壓UCEO通??砂唇涷灩竭x取 ??? UCEO=Udmax/(1-D)??? (1) 式中:Udmax為漏源極的最大電壓; ????? D為占空比。 ??? 開關器件的電流按高頻變壓器一次繞組的最大電流來確定。本文中,由于采用雙管電路結構,每個開關管所承受的電壓為UCEO的一半,故選用耐壓500V、電流8A的IRF840。 ??? 變換器中PFC級的二極管選用了超快速恢復二極管,而DC/DC級整流輸出端選用肖特基整流二極管,以減小二極管的壓降。 3.3??? 變換器電感的設計 ??? 在單級PFC變換器中,為了實現功率因數校正,通??刂芇FC級的Boost電感工作在不連續(xù)導電模式;而為了提高變換器的效率,DC/DC級一般采用連續(xù)導電模式,在一個開關周期內,通過L1和L2的電流如圖2所示。
圖 2??? 開 關 周 期 內 通 過L1和L2的 電 流 ??? 為了使Boost電感工作于DCM,則有 ??? <??? (2) ??? f(D)≈{exp1.96/〔1/(1-D)3/2-1〕-1}/1.6(3) 式中:RL為變換器的負載電阻; ????? L1為Boost電感值; ????? Ts為變換器的開關周期; ????? D為占空比; ????? η為變換器的效率; ????? UC1為中間儲能電容上的電壓; ????? Uo為輸出電壓。 ??? 為了使得DC/DC級工作在連續(xù)導電模式下,則有 ??? >(1-D)??? (4) 式中:L2為DC/DC級的儲能電感值。 ??? 在本文中,要求Ts=8.33μs,D=0.2,Uo=16V,RL=2.133Ω,UC1=380V。故選取L1=100μH,L2=20μH。 ??? 功率因數校正的實驗結果如圖3所示。圖中,第一條波形是交流輸入電壓經整流橋后的電壓波形,第二條波形是流經Boost電感L1的電流波形,近似于正弦波。實驗得到的功率因數為0.97。
圖3??? 輸入電壓Vin與電流iL1 3.4??? 高頻變壓器的設計 ??? 高頻變壓器是變換器的核心元件,它的性能好壞不僅影響其本身的發(fā)熱和效率,而且還會影響到變換器的技術性能和可靠性。 ??? 1)磁芯的選用 ??? 本文的負載設計為Uo=16V,Io=7.5A,由高頻變壓器的二次繞組N2繞組提供。而繞組N3提供UC3842的工作電源,其輸出功率很小,可忽略。由設定條件可知,高頻變壓器的輸出功率為 ??? P2=16×7.5=120W ??? 根據文獻[3]給出的輸出功率與磁芯尺寸的關系,選用了PQ32-30磁芯,其有效截面積為167mm2。 ??? 2)繞組匝數的確定 ??? 變壓器初級繞組電壓幅值UP1為 ??? UP1=UC1-ΔU1≈UC1=380V??? (5) 式中:UC1是變壓器輸入直流電壓(等于中間儲能電容上的電壓); ????????? ΔU1是變壓器初級繞組的電阻壓降與開關管的導通壓降之和,在實際計算中可以忽略。 ??? 變壓器二次繞組N2的電壓幅值UP2 ??? UP2==83.5V(6) 式中:ΔU2是變壓器二次繞組的電阻壓降與整流管的壓降之和。 ??????? 初級繞組匝數N1為 ??? N1=??? (7) 式中:f是開關頻率(120kHz); ?????????? ΔBm是磁通增量,此處取ΔBm=0.15T。 ??? N1=×104=25.3匝??? (8) ??? 實際取N1為26匝。 ??? 二次繞組N2匝數為 ??? N2=N1=×26=5.7≈6匝??? (9) ??? 二次繞組N3提供UC3842的12V工作電壓,其匝數由下式得到 ??? N3=N1=≈4匝(10) 式中:UP3為二次繞組N3的電壓幅值。 4??? 結語 ??? 應用脈寬調制集成控制芯片UC3842構成的單級PFC變換器,具有電路結構簡單、成本低等優(yōu)點。不僅獲得穩(wěn)定的輸出,而且實現了功率因數校正。 |
單級功率因數校正(PFC)變換器的設計
- 變換器(108177)
相關推薦
基于SEPIC變換器的高功率因數LED照明電源設計
針對LED驅動電源功率因數低的問題,依據LED照明電源的特點,選擇SEPIC電路作為主電路拓撲實現功率因數校正(PFC)和LED電流控制。傳統(tǒng)的SEPIC電路用于功率因數校正時都工作在斷續(xù)模式
2018-02-28 09:07:275952
從6個問題解析功率因數校正
1、什么是功率因數校正(PFC)? 功率因數指的是有效功率與總耗電量(視在功率)之間的關系,也就是有效功率除以總耗電量(視在功率)的比值。 基本上功率因數可以衡量電力被有效利用的程度, 當功率因數
2018-03-28 14:34:5615755
PFC功率因數校正與LDO低壓差線性穩(wěn)壓器簡介
PFC (功率)變換 LDO(線性穩(wěn)壓器)* 阻抗匹配 == 耦合電路1 LDO低壓差線性穩(wěn)壓器(限流過熱保護)2 PWM方波發(fā)生器占空比 D = τ (tao) \ T(周期)調制深度3 SPWM音頻/全波整流后的正弦波信號(脈寬調整)4 PFC功率因數校正
2022-03-02 07:40:37
功率因數的校正
。免受公用事業(yè)公司“復仇”之苦的一個辦法是使用TI 全新功率因數校正控制器 UCC28180。該產品在連續(xù)導通模式下工作,支持從幾百瓦到數千瓦的寬泛功率級,進而可用于廣泛的家庭及辦公電器設備,例如電視
2018-09-19 11:30:24
單級BUCK-BOOST變換器實現APFC的原理及分析
單級BUCK-BOOST變換器實現APFC的原理及分析本文分析了用BUCK-BOOST電路和反激變換器隔離實現單級功率因數校正的原理和變換過程,給出了電路的Matlab仿真分析的模型。通過對變換器工作在DCM模式下的電路仿真,驗證了此方法有良好的效果。[hide][/hide]
2009-12-10 17:09:18
DK812 6W原邊反饋單級有源PFC LED驅動芯片
DK812 6W原邊反饋單級有源PFC LED驅動芯片功能描述: DK812是一款單級AC-DC變換器控制芯片,芯片集成了700V高壓開關功率管和初級峰值電源檢測電路。 DK812芯片內還包含
2015-11-23 15:19:32
MT7933單級/高功率因數/原邊控制交流轉直流
資料方案+++++郭生qq:3301086671下面產品介紹:MT7933 是一個單級、高功率因數,原邊控制交流轉直流LED驅動芯片。MT7933 集成片上功率因數校正(PFC)功能,在臨界導通模式
2019-08-20 11:46:33
MT7936美芯晟驅動單級高功率因數 AC-DC LED 驅動
描述//QQ2892715427 MT7936 是一個單級、高功率因數,原邊控制交流轉直流LED驅動芯片。MT7936 集成片上功率因數校正(PFC)功能,在臨界導通模式下運行,實現了高功率因數并
2016-09-19 22:38:05
NCL30000功率因數校正可調光LED驅動器的典型應用
NCL30000功率因數校正可調光LED驅動器的典型應用。 NCL30000是一款開關模式電源控制器,適用于中低功率單級功率因數(PF)校正LED驅動器
2019-05-16 09:08:41
NCL30000功率因數校正可調光LED驅動器的典型應用
NCL30000功率因數校正可調光LED驅動器的典型應用。 NCL30000是一款開關模式電源控制器,適用于中低功率單級功率因數(PF)校正LED驅動器
2019-05-16 09:09:09
NCL30002DIM1GEVB,適用于中低功率單級功率因數(PF)校正LED驅動器
NCL30002DIM1GEVB,評估板采用NCL30002開關模式電源控制器,適用于中低功率單級功率因數(PF)校正LED驅動器。該器件作為臨界導通模式(CrM)降壓控制器工作,以在特定線電壓
2019-09-05 07:32:14
NCP1608是一款有源功率因數校正(PFC)控制器,專門用作交流 - 直流適配器
NCP1608BOOSTGEVB,NCP1608評估板,100W升壓,功率因數校正。 NCP1608是一款有源功率因數校正(PFC)控制器,專門用作交流 - 直流適配器,電子鎮(zhèn)流器和其他中等功率離線
2019-10-12 09:06:04
UCC28019有源功率因數校正PFC控制器相關資料分享
UCC28019是德州儀器公司生產的一款有源功率因數校正(PFC)控制器。它為8腳SOIC封裝或者PDIP封裝。
2021-04-22 06:43:13
pspice升壓功率因數校正
各位老師我用pspice10.5仿真基于uc3854的升壓功率因數校正,但是輸入電流與輸入電壓相位相差90,這是為何呢?謝謝了。如果給我解決我可以把積分都給你的。
2012-05-03 08:14:05
【功率因數校正(PFC)手冊】選擇正確的功率因數控制器解決方案
功率因數校正解決方案的選擇范圍包括無源電路到各種有源電路。因應用的功率水平和其他參數的不同,解決方案也會有所不同。近年來分立半導體元件的發(fā)展和更低價格的控制IC的上市,進一步拓寬了有源PFC解決方案
2021-08-03 16:06:57
為什么我們需要功率因素校正PFC?
功率因素校正的好處包含:節(jié)省電費增加電力系統(tǒng)容量穩(wěn)定電流低功率因數即代表低的電力效能,越低的功率因數值代表越高比例的電力在配送網絡中耗損,若較低的功率因數沒有被校正提升,電力公司除了有效功率外,還要
2022-10-08 11:32:20
什么是功率因數校正 PFC?
供應器上的功率因數校正器的運作原理是去控制調整交流電電流輸入的時間與波型, 使其與直流電電壓波型盡可能一致,讓功率因數趨近于。 這對于電力需求量大到某一個水準的電子設備而言是很重要的, 否則電力設備
2022-10-08 11:30:07
什么是主動式/被動式功率因數校正(Active/Passive PFC)?
[控制線路及功率型開關式組件(power sine conductor On/Off switch),基本運作原理為調整輸入電流波型使其與輸入電壓波形盡可能相似,功率因數校正值可達近乎100%。 此外主動式
2022-10-08 11:43:45
關于電源的功率因數校正
這些天準備和小伙伴攻一下功率因數校正,但是不知道哪些芯片能夠比較好的進行功率因數測量,或者是用哪種方法可以測得功率因數。我們也查閱了一些資料,但是沒找到滿意的方法,哪位大神指點一下!!
2015-06-17 13:28:34
史上最全PFC(功率因數校正)學習資料推薦
達到月薪20K以上的標準之一。想成為電源工程師中的大咖,精通PFC是需要具備的條件之一! PFC(功率因數校正),功率因數指的是有效功率與總耗電量(視在功率)之間的關系,也就是有效功率除以總耗
2017-06-23 19:56:08
基于功率因數校正控制器的通用交流輸入12V/3A單級PFC反激
描述PMP9730 參考設計采用 UCC28051 功率因數校正控制器來實現單級 PFC 反激式交流/直流轉換器,使其從通用交流輸入生成隔離式 12V@3A 輸出。此設計采用 UCC28910 初級
2018-12-18 15:48:54
基于SEPIC變換器的高功率因數LED照明電源設計
效率高達92.3%?! ?、結語 本文介紹了一種用于LED照明的高功率因數電源的設計,電源主電路拓撲采用SEPIC變換器,利用單級變換器實現功率因數校正,使用的器件少,損耗低,電源體積小;反饋控制簡單
2018-10-22 15:24:12
如何以單級方式驅動帶功率因數校正的LED
PFC-SEPIC LED 驅動器 — 哇,縮寫詞真多!PFC 代表“功率因數校正”SEPIC 代表“單端初級電感轉換器”當然,LED 代表“發(fā)光二極管”在一個轉換器中整合這三種特性,可為 LED
2022-11-22 07:37:41
如何區(qū)別主動式功率因數校正?
知道了主動式功率因數校正(Active Power Factor Correction)的好處后,使用者最想知道的是如何區(qū)分真的具有主動式功率因數校正功能的電源供應器。在此提供幾項簡單評量的方式
2022-10-08 11:59:08
山勝電子電源模塊PFC變換器
要求不特別高時,將PFC變換器和后級DC/DC變換器組合成一個拓撲,構成單級高功率因數AC/DC開關電源,只用一個主開關管,可使功率因數校正到0.8以上,并使輸出直流電壓可調,調整后的直流電壓就促進
2013-08-20 16:00:47
數字控制的無橋300W功率因數校正轉換器參考設計
描述此設計是一種數字控制的無橋 300W 功率因數校正轉換器。無橋 PFC 轉換器的明顯特征是輸入端不再需要二極管電橋。這降低了二極管電橋通常發(fā)生的功率損失,從而改進了總體系統(tǒng)效率。對于
2022-09-23 07:24:11
無橋功率因數校正轉換器
`描述此設計是一種數字控制的無橋 300W 功率因數校正轉換器。無橋 PFC 轉換器的明顯特征是輸入端不再需要二極管電橋。這降低了二極管電橋通常發(fā)生的功率損失,從而改進了總體系統(tǒng)效率。對于
2015-04-08 15:10:13
有源功率因數校正與單級功率因數校正的關系
請問有源功率因數校正與單級功率因數校正有關系嗎?在我看來單級功率因數校正是否包括有源功率因數校正技術呢,對不對呢?有人能詳細解答一下嘛?
2020-04-19 21:26:10
有源功率因數校正技術介紹
開關功率因數校正電路的原理,包括單相、三相有源箱位零電壓開關功率因數校正電路。
本書可作為電氣工程與自動化專業(yè)、電子信息工程專業(yè)的高年級本科生、電氣工程學科的研究生參考書,也可作為從事開關電源、變頻器、UPS、工業(yè)電源等電力電子裝置開發(fā)、設計工程技術人員的參考書。
2023-09-19 07:12:10
有源功率因數校正電路和無源功率因數校正電路介紹
很多場合中不滿足諧波準入的限制要求。此外,由于二極管不控整流,PFC輸出電壓隨輸入電壓和負載的變化而變化,嚴重影響變換器輸出性能,因此無源功率因數校正電路適用于對供電質量要求較低,對體積和性能要求較低
2023-04-03 14:37:48
有源功率因數校正電路工作原理分析
變換器輸出電壓小于電源電壓,故稱為降壓變換器。 圖2 降壓型PFC主電路這種電路的主要優(yōu)點是:開關管所受的最大電壓為輸人電壓的最大值,因此開關管的電壓應力較?。划敽?b class="flag-6" style="color: red">級短路時,可以利用開關管實現輸出短路
2011-09-22 09:45:00
有源功率因數校正電路工作原理分析
一段因輸人電壓低而不能正常工作,輸出電壓較低,在相同功率等級時,后級DC/DC變換器電流應力較大;開關管門極驅動信號地與輸出地不同,驅動較復雜,加之輸人電流斷續(xù),功率因數不可能提高很多,因此很少被采用
2012-11-28 14:38:48
用單級方式驅動帶功率因數校正的LED
作者:Brian KingPFC-SEPIC LED 驅動器 — 哇,縮寫詞真多!PFC 代表“功率因數校正”SEPIC 代表“單端初級電感轉換器”當然,LED 代表“發(fā)光二極管”在一個轉換器中整合
2018-09-13 15:09:15
用于AC/DC系統(tǒng)的功率因數校正PFC控制器IC
全球最知名的半導體廠商羅姆(ROHM)株式會社推出了兩款用于AC/DC系統(tǒng)的功率因數校正(PFC)控制器IC——BD7690FJ和BD7691FJ,適用于所有需要提高功率因數的產品。這兩款芯片采用
2019-04-28 09:55:07
L4981在門機電源功率因數校正中的應用
針對普通開關電源功率因數較低和諧波較大的缺陷,以M981功率因數校正芯片為核心,構建了雙級式PFC電源的功率因數校正前級。在選取確定了主電路拓撲結構后,介紹了它的工作原
2008-12-19 01:50:4155
三相單級全橋 PFC 變換器電壓尖峰產生機理分析與抑制
文中提出一種基于全橋結構的三相單級功率因數校正(PFC)變換器,該變換器工作于電感電流斷續(xù)模式(DCM),電感電流即輸入電流的峰值自動跟蹤輸入電壓,可實現功率因數校正。詳細
2009-04-08 15:13:4432
有源功率因數校正變換器的實現
本文介紹了開關電源功率因數校正的實質,分析了功率因數校正的電路實現方法,并提出了變換器的相關要求。近年來,隨著電子技術的發(fā)展,各種辦公自動化設備,家用電器,
2009-08-07 08:56:1656
電荷泵高功率因數變換器
本文提出一種新型電荷泵高功率因數準半橋變換器拓撲結構。該變換器具有電路結構簡單和采用普通的PWM 控制方式的特點。文中分析了電路的工作過程及取得高功率因數的條件,
2009-08-15 15:35:1019
Boost型功率因數校正變換器的數字控制研究
Boost 型功率因數校正變換器的數字控制研究:數字控制逐漸和電力電子應用緊密結合,功率因數校正是電力電子技術的一個重要應用。文中針對Boost 型功率因數校正電路建立了平均
2009-10-14 09:39:2328
單相有源功率因數校正技術的發(fā)展
本文對現有的功率因數校正技術進行了分析和總結。通過軟開關技術以及新型高性能的電路拓撲設計,分析了提高AC-DC變換器的轉換效率的技術。提出了無橋PFC電路是高性能功率因
2009-10-14 10:40:5441
BOOST高功率因數變換器
BOOST 高功率因數變換器5 電力電子仿真領域的方案探求:由于電力電子研究中相關功率變換器的非線性以及可能有的多種運行模(連續(xù)模式CCM和不連續(xù)模式D
2010-03-20 16:14:1936
單級PFC變換器的功率因數校正效果的研究
單級PFC變換器的功率因數校正效果的研究
為了使開關電源的輸入電流諧波滿足要求,必須加入功率因數校正(PFC)。目前應用得最廣泛的是PFC級+DC/DC級的兩級方案,它們
2010-04-12 18:04:2734
一種新穎的功率因數校正芯片的研究
一種新穎的功率因數校正芯片的研究
摘要:介紹了一種新穎的功率因數校正(PFC)芯片。它的主要特點是提高了輕載時的功率因數和改善了電路的
2009-07-06 09:17:39871
應用DCVM模式工作的Cuk變換器于功率因數校正
應用DCVM模式工作的Cuk變換器于功率因數校正
1引言
隨著電力電子裝置的大量應用,使大量諧波電流注入了電網中,從而
2009-07-09 11:09:211253
單極隔離式功率因數校正(PFC)變換器
單極隔離式功率因數校正(PFC)變換器
1引言
現代開關電源的主要發(fā)展趨向之一是提高AC/DC變換器輸入端功率因數,減少對電網的諧波污染。傳統(tǒng)的AC/DC開關變換
2009-07-10 10:07:392759
改進的單級功率因數校正AC/DC變換器的拓撲綜述
改進的單級功率因數校正AC/DC變換器的拓撲綜述
摘要:單級功率因數校正(簡稱單級PFC)由于控制電路簡單、成本低、功率密度高在中
2009-07-11 13:55:24640
基于Flyboost模塊的新型單級功率因數校正變換器
基于Flyboost模塊的新型單級功率因數校正變換器
摘要:提出了一種新型的功率因數校正模塊(flyboost模塊),它具有
2009-07-14 09:16:361030
一種新型單級功率因數校正(PFC)變換器
一種新型單級功率因數校正(PFC)變換器
摘要:提出了一種新型的功率因數校正單元(flyback+boost單元)。這種功率因數單
2009-07-14 17:49:32932
單級功率因數校正(PFC)研究的新進展
單級功率因數校正(PFC)研究的新進展
摘要:傳統(tǒng)兩級功率因數校正(PFC)電路復雜、器件多、功率密度低,效率不是很理
2009-07-14 17:52:481079
無源無損軟開關功率因數校正電路的研制
無源無損軟開關功率因數校正電路的研制
在開關電源中引入功率因數校正PFC(Power FactorCorrection)技術,一方面使電源輸入電流與輸入電壓波形同相,即使功率因數趨于1
2009-11-05 10:17:251271
PFC變換器輸入電流過零畸變校正
摘要:功率因數校正(PFC)變換器普遍存在輸入電流在輸入電壓過零點附近發(fā)生畸變的現象?,F分析了PFC變換器輸入電流在輸入電壓過零點附近產生畸變原因的基礎上,針對PFC變換器的輸入電流超前于輸入電壓,從而導功率因數不為1和輸入電流過零畸變的問題,提出
2011-02-23 16:45:0669
新型單級隔離型軟開關功率因數變換器
提出一種兼具軟開關和箝位的新型單級隔離型 功率因數校正 變換器拓撲。該變換器能滿足電氣隔離的應用要求,提升單級隔離型PFC的功率等級。與傳統(tǒng)單級結構相比,新拓撲輸入電流
2011-07-26 17:58:4333
新型三相功率因數校正器的研究
以單相Cuk型變換器合成三相功率因數校正電路為研究對象,將三相交流電分成單相A-B、B-C、C-A進行功率因數校正,運用升壓型平均電流控制的功率因數校正思想,解決了常規(guī)單相Cuk型有
2011-09-23 14:51:3651
電荷泵式PFC雙管正激變換器
分析了電荷泵電路實現功率因數校正(PFC)的基本原理和條件;提出了一種電荷泵式PFC雙管正激變換器;詳細分析了該變換器的工作原理;討論了輸入限流電感和電荷泵電容的參數設計;
2011-10-21 18:33:2168
雙輸出單級PFC變換器驅動高亮LED的方法
本文提出了一種工作于斷續(xù)模式( DCM) 雙輸出單級反激功率因數校正( PFC) 變換器驅動高亮LED 的方法。為了避免變換器兩路輸出的交叉影響,應用時分復用方法實現了每一條輸出支路
2012-08-03 14:43:252895
單級功率因數校正(PFC)變換器的設計
2014-05-04 02:35:5513
一種電解電容器的進料方案少交流/直流驅動的驅動程序_英版資料
為了實現高效率、高功率因數、高可靠性、低成本、無閃爍的電解電容器的單相交流/直流發(fā)光二極管(LED)驅動的研究。該驅動程序是由一個功率因數校正(PFC)變換器和雙向變換器。
2016-06-08 14:55:420
功率因數校正器與uc3853設計
下工作。的uc3853采用平均電流控制模式,并與一個升壓或反激式變換器。這是從PFC控制電路UC3854的家庭發(fā)展起來的,在一個8引腳封裝相同的部件功能。多用于集成電路UC3854的家庭信息也適用于uc3853。特別是,Unitrode應用筆記u-134提供功率因數校正的一個很好的概述
2017-06-29 15:35:2228
儲能電感對二次型Boost PFC變換器的性能影響
相比于斷續(xù)導電模式(DCM) Boost功率因數校正(PFC)變換器,輸入電感L1,和儲能電感厶均工作于DCM的二次型Boost PFC變換器的輸出電壓紋波明顯減小,但其功率因數(PF)較低。首先
2018-03-06 11:12:250
二次型Boost功率因數校正變換器
與傳統(tǒng)電流斷續(xù)模式( DCM) Boost功率因數校正(PFC)變換器相比,定占空比控制二次型DCM-DCM Boost PFC變換器的輸出電壓紋波明顯減小,然而,其功率因數(PF)低于傳統(tǒng)DCM
2018-03-28 10:56:041
基于雙輸出單級反激PFC變換器驅動高亮LED的設計
AC /DC 變換器中常見的有源功率校正( Active PowerFactor Correction,APFC) 電路是兩級PFC 電路,前一級電路用來進行功率因數校正,后一級電路用作DC /DC 變換器
2019-12-13 15:56:41963
基于一種雙輸出單級反激PFC變換器的LED驅動器控制設計
AC /DC變換器中常見的有源功率校正( Active PowerFactor Correction,APFC) 電路是兩級PFC電路,前一級電路用來進行功率因數校正,后一級電路用作DC /DC變換器。
2019-12-17 15:29:551068
對于PFC(功率因數校正)你了解多少
引言:PFC(Power Factor Correction)即功率因數校正,主要用來表示電子產品對電能的利用效率。功率因數越高,說明電能的利用效率越高。通過CCC認證的電腦電源,都必須增加PFC
2022-08-11 09:13:423777
將 BCM 功率因數校正 (PFC) 控制器用于 100W 照明系統(tǒng)的 LED 應用設計指南
將 BCM 功率因數校正 (PFC) 控制器用于 100W 照明系統(tǒng)的 LED 應用設計指南
2022-11-14 21:08:292
美浦森推薦PFC 功率因數校正方案
PFC的英文全稱為“PowerFactorCorrection”,意思是“功率因數校正”,功率因數指的是有效功率與總耗電量(視在功率)之間的關系,也就是有效功率除以總耗電量(視在功率)的比值?;旧?/div>
2022-04-29 16:40:55648
什么是功率因數 功率因數校正基礎知識
簡介 功率因數校正 (PFC) 是客戶在選擇電源時尋求的功能之一,因為它對設備的整體效率起著巨大的作用。本文檔介紹了功率因數校正 (PFC)的基本事實和原理以及管理該功能的法規(guī)。它還討論了常見的原因
2023-10-05 15:56:001056
評論
查看更多