引言
所有信號處理系統(tǒng)都要求混合信號器件,例如:模數(shù)轉(zhuǎn)換器 (ADC) 和/或數(shù)模轉(zhuǎn)換器 (DAC) 等。對于寬動態(tài)范圍模擬信號處理的需求,要求必須使用高性能 ADC 和 DAC。要在高噪聲數(shù)字環(huán)境下保持性能,依賴于優(yōu)秀的電路設(shè)計方法,例如:正確的信號布局、去耦和接地等。
毫無疑問,在系統(tǒng)設(shè)計中,接地是我們討論最多的話題之一。盡管基本概念十分簡單,但實現(xiàn)起來卻并不容易。就線性系統(tǒng)而言,接地是信號建立的參考基準(zhǔn),而不幸的是,它也成為單極電源系統(tǒng)中電源電流的返回通路。錯誤的接地方法會降低高精度線性系統(tǒng)的性能。沒有哪一種教程能夠保證一定能獲得理想的結(jié)果,但我們可以注意幾個容易引發(fā)問題的方面。
本系列文章將為您詳細介紹混合信號系統(tǒng)使用的一些接地方法,它共分兩個部分,本文為第一部分。第 1 部分為您解釋說明一些常用的術(shù)語和接地層,并介紹劃分方法。第2部分探討分割接地層的一些方法,包括每種方法的利弊。它還介紹了使用多轉(zhuǎn)換器和多板的一些系統(tǒng)的接地情況。第2部分將出現(xiàn)在《模擬應(yīng)用期刊》的后續(xù)期刊中。
在系統(tǒng)設(shè)計中經(jīng)常使用的一個術(shù)語是星形接地。這個術(shù)語的意思是,某個電路中所有電壓均指一個單接地點,也即星形接地點。它的關(guān)鍵特性是,在接地網(wǎng)絡(luò)中,對特定點的所有電壓進行測量,而不僅僅是某個非定義接地(不管探針定在何處)。特別需要指出,這種方法實現(xiàn)起來很困難。例如,在一個星形接地系統(tǒng)中,為了最小化信號相互作用和高阻抗信號或接地通路產(chǎn)生的效應(yīng)而擬定出所有信號通路,會帶來實現(xiàn)問題。當(dāng)給電路添加電源時,它們會增加非理想接地通路,或者其現(xiàn)有接地通路中電源電流較強或噪聲較多,以致于破壞信號傳輸。
圖 1 數(shù)據(jù)轉(zhuǎn)換器中的 AGND 和 DGND 引腳
混合信號器件中AGND和DGND引腳解釋
數(shù)字和模擬設(shè)計工程師們往往會從各個不同角度來查看混合信號器件,但每名使用混合信號器件的工程師都會注意到模擬接地 (AGND) 和數(shù)字接地 (DGND)。對于如何處理這些接地,許多人感到困惑,而多數(shù)困惑均來自于如何標(biāo)示ADC接地引腳。注意,引腳名稱AGND和DGND是指該組件的內(nèi)部情況,并不必然表明你應(yīng)該在外部如何操作。數(shù)據(jù)轉(zhuǎn)換器數(shù)據(jù)表通常建議將模擬和數(shù)字接地捆綁在器件上。但是,設(shè)計人員有時想而有時又不想讓數(shù)據(jù)轉(zhuǎn)換器成為系統(tǒng)的星形接地點。我們應(yīng)該如何做呢?
如圖1所示,混合信號IC內(nèi)的接地一般會保持獨立,目的是避免數(shù)字信號耦合進入模擬電路。對于連接芯片上焊墊至封裝引腳相關(guān)的內(nèi)部電感和電阻(相比電感可忽略不計),IC設(shè)計人員沒有一點辦法??焖僮兓臄?shù)字電流在數(shù)字電路中產(chǎn)生電壓(di/dt),其不可避免地會通過雜散電容耦合進入模擬電路。
若不考慮這類耦合,IC可以工作得很好。但是,為了防止進一步的耦合,我們應(yīng)使用最短的導(dǎo)線,從外部把AGND和DGND引腳接合到一起,連接同一低阻抗接地層。DGND連接中任何一點外部阻抗都會引起更多的數(shù)字噪聲,而其反過來又會通過雜散電容讓更多的數(shù)字噪聲耦合進入模擬電路。
模擬還是數(shù)字接地層,又或者兩者兼有?
為什么需要接地層?如果一條總線線路用作接地而非層,則必須進行計算才能確定總線線路的壓降,因為大多數(shù)邏輯轉(zhuǎn)換等效頻率的阻抗。這種壓降造成系統(tǒng)最終精確度誤差。要實現(xiàn)一個接地層,雙面PCB的一面由連續(xù)銅材料組成,用作接地。由于使用大面積、扁平化導(dǎo)體方式,大量金屬材料實現(xiàn)最低程度電阻和電感。
接地層起到一個低阻抗返回通路的作用,旨在去耦快速數(shù)字邏輯引起的高頻電流。另外,它還最小化了電磁干擾/射頻干擾(EMI/RFI)產(chǎn)生的輻射。由于接地層的屏蔽行為,電路對于外部EMI/RFI的敏感性降低了。接地層還允許高速數(shù)字或者模擬信號通過傳輸線路(微波傳輸帶或者帶狀線)方法進行傳輸,其要求受控阻抗。
如前所述,AGND和DGND引腳必須在器件上接合到一起。如果必須隔離模擬和數(shù)字接地,那么我們應(yīng)該將它們連接到模擬接地層、數(shù)字接地層還是兩個都連呢?
請記住,數(shù)據(jù)轉(zhuǎn)換器是模擬的!因此,AGND和DGND引腳應(yīng)連接至模擬接地層。如果它們被連接至數(shù)字接地層,則模擬輸入信號將出現(xiàn)數(shù)字噪聲,因為它可能為單端,并且參考模擬接地層。連接這兩個引腳至靜態(tài)模擬接地層,會把少量數(shù)字噪聲注入其中,并降低輸出邏輯的噪聲余量。這是因為,輸出邏輯現(xiàn)在參考模擬接地層,并且所有其它邏輯均參考數(shù)字接地層。但是,這些電流應(yīng)為非常小,并且通過確保轉(zhuǎn)換器輸出不驅(qū)動大扇出得到最小化。
可能的情況是,設(shè)計使用器件的數(shù)字電流可低可高。兩種情況的接地方案并不相同。一般而言,數(shù)據(jù)轉(zhuǎn)換器常常被看作為低電流器件(例如:閃存ADC)。但是,今天的一些擁有片上模擬功能的數(shù)據(jù)轉(zhuǎn)換器,正變得越來越數(shù)字化。隨著數(shù)字電路的增加,數(shù)字電流和噪聲也隨之增加。例如,∑-△ADC包含一個復(fù)雜的數(shù)字濾波器,其相當(dāng)大地增加了器件的數(shù)字電流。
低數(shù)字電流數(shù)據(jù)轉(zhuǎn)換器接地
正如我們講的那樣,數(shù)據(jù)轉(zhuǎn)換器(或者任何混合信號器件)均為模擬。在所有系統(tǒng)中,模擬信號層都位于所有模擬電路和混合信號器件放置的地方。同樣,數(shù)字信號層擁有所有數(shù)字?jǐn)?shù)據(jù)處理電路。模擬與數(shù)字接地層應(yīng)有同各自信號層相同的尺寸和形狀。
圖2概述了低數(shù)字電流混合信號器件接地的方法。該模擬接地層沒有被損壞,因為小數(shù)字瞬態(tài)電流存在于本地去耦電容器VDig和DGND(綠線)之間的小型環(huán)路中。圖2還顯示了一個位于模擬和數(shù)字電源之間的濾波器。共有兩類鐵氧體磁珠:高Q諧振磁珠和低Q非諧振磁珠。低Q磁珠常用于電源濾波,其與電源連接點串聯(lián)。
圖 2 低內(nèi)部數(shù)字電流數(shù)據(jù)轉(zhuǎn)換器接地
高數(shù)字電流數(shù)據(jù)轉(zhuǎn)換器接地
圖2所示電路靠VDig和DGND之間的去耦電容器來使數(shù)字瞬態(tài)電流隔離在小環(huán)路中。但是,如果數(shù)字電流足夠大,并且有組件在DC或者低頻下,則該去耦電容器可能必須非常的大,而這是不實際的。VDig和DGND之間環(huán)路之外的任何數(shù)字電流,必須流經(jīng)模擬接地層。這可能會降低性能,特別是在高分辨率系統(tǒng)中更是如此。圖3顯示了一種適用于強數(shù)字電流混合信號器件的替代接地方法。數(shù)據(jù)轉(zhuǎn)換器的AGND引腳連接至模擬接地層,而DGND引腳則連接至數(shù)字接地層。數(shù)字電流也隔離于模擬接地層,但兩個接地層之間的噪聲卻直接作用于器件的AGND和DGND引腳之間。模擬和數(shù)字電路必須獲得有效的隔離。AGND和DGND引腳之間的噪聲必須不能過大,否則會降低內(nèi)部噪聲余量,或者引起內(nèi)部模擬電路損壞。
模擬和數(shù)字接地層的連接
圖2和3顯示了連接模擬和數(shù)字接地層的備選背靠背肖特基二極管。該肖特基二極管防止大DC電壓或者低頻電壓尖峰在兩個層之間形成。如果其超出0.3V,這些電壓可能會損壞混合信號IC,因為它們直接出現(xiàn)在AGND和DGND引腳之間。
作為一種背靠背肖特基二極管的替代方法,鐵氧體磁珠可以在兩個層之間提供一個DC連接,并在數(shù)兆赫茲頻率時對其進行隔離,此時鐵氧體磁珠電阻增加。這種方法可防止IC受到AGND和DGND之間DC電壓的損壞,但是這種鐵氧體磁珠提供的DC連接會引入討厭的DC接地環(huán)路,其可能不適合于高分辨率系統(tǒng)。只要在高數(shù)字電流IC特殊情況下AGND和DGND引腳被隔離,則在必要時應(yīng)將它們連接在一起。
跳線和/或帶選項允許我們嘗試兩種方法,以驗證哪種方法能夠獲得最佳總系統(tǒng)性能。
隔離還是分割:哪一種對接地層重要?
一個常見問題是如何隔離接地,以讓模擬電路不干擾數(shù)字電路。眾所周知,數(shù)字電路噪聲較大。開關(guān)期間,邏輯飽和從其電流吸引強、快速電流尖峰。相反,模擬電路非常容易受到噪聲的影響。模擬電路可能不會干擾數(shù)字邏輯。相反,可能的情況是,高速數(shù)字邏輯可能會干擾低級模擬電路。因此,這個問題應(yīng)該是如何防止數(shù)字邏輯接地電流污染混合信號PCB上的低級模擬電路。我們首先想到的可能是分割接地層以將DGND隔離于AGND。盡管分割層方法可以起作用,但它存在許多問題—特別是在一些大型、復(fù)雜系統(tǒng)中。
圖 3 高內(nèi)部數(shù)字電流數(shù)據(jù)轉(zhuǎn)換器接地
1、電流應(yīng)返回其本地源,并且要盡可能地緊湊。否則,應(yīng)構(gòu)建環(huán)路天線。
2、一個系統(tǒng)應(yīng)只有一個基準(zhǔn)層,因為兩個基準(zhǔn)會形成一個偶極天線。
在EMC測試期間,當(dāng)在接地或者電源層中某個插槽或者縫隙之間布置線路時可觀察到大多數(shù)問題。由于這種布線會引起輻射和串?dāng)_問題,因此我們不建議使用。
重要的是,清楚地知道某個分割層中的接地電流如何流動以及流向何處。大多數(shù)設(shè)計人員只想到了信號電流流向何處,而忽略了返回電流的路徑。高頻信號有一個特點:沿阻抗(電感)最低的路徑流動。路徑電感由路徑圈起的環(huán)路面積大小決定。電流返回源必須經(jīng)過的面積越大,電感也就越大。最小電感路徑直接靠近線路。因此,不管是哪一層—電源或者接地—返回電流都在與線路相鄰的層上流動。電流在該層內(nèi)會微有擴散,并且保持在線路下面。本質(zhì)上而言,其精確分布情況與高斯曲線類似。圖4表明,返回電流直接位于信號線路下面。這會形成一條最小阻抗的路徑。
圖 4 返回電流分布情況
返回路徑的電流分布曲線為:
IO為總信號電流(A),h為線路厚度(cm),而D為距離線路的長度(cm)。由該方程式我們可知道,數(shù)字接地電流不愿流經(jīng)接地層的模擬部分,因此不會損壞模擬信號。
就基準(zhǔn)層而言,過孔間隙部分不干擾返回電流路徑,這一點很重要。如果存在障礙,返回電流便會另尋路徑繞過它,如圖5所示。但是,這種布線最有可能會引起電流的電磁場,干擾其它信號線路的磁場,從而產(chǎn)生串?dāng)_問題。另外,這種障礙會對它上面的線路阻抗產(chǎn)生不利影響,導(dǎo)致不連續(xù)以及EMI增加。
本系列文章第2部分將討論分割接地層存在的利和弊,并說明多轉(zhuǎn)換器和多板系統(tǒng)的接地方法。
圖 5 有無插槽兩種情況的返回電流
參考文獻
1、“混合信號PCB分區(qū)與布局”,作者:H. W. Ott,2001年6月《印刷電路設(shè)計》第8-11頁。
2、《模數(shù)轉(zhuǎn)換器接地方法影響系統(tǒng)性能》,《應(yīng)用報告》,網(wǎng)址:www.ti.com/sbaa052-aaj
相關(guān)網(wǎng)址
數(shù)據(jù)轉(zhuǎn)換器:
www.ti.com/dc-aaj
精密數(shù)據(jù)轉(zhuǎn)換器接地方法舉例,請訪問:www.ti.com/e2egrounding-aaj
《模擬應(yīng)用期刊》訂閱,請訪問:www.ti.com/subscribe-aaj
評論
查看更多