巨磁電阻的構(gòu)成和一般電阻有什么不同嗎?
磁性金屬和合金一般都有磁電阻現(xiàn)象,所謂磁電阻是指在一定磁場下電阻改變的現(xiàn)象,人們把這種現(xiàn)象稱為磁電阻。所謂巨磁阻就是指在一定的磁場下電阻急劇減小,一般減小的幅度比通常磁性金屬與合金材料的磁電阻數(shù)值約高10余倍。
1988年法國巴黎大學(xué)的肯特教授研究小組首先在Fe/Cr多層膜中發(fā)現(xiàn)了巨磁電阻效應(yīng),在國際上引起了很大的反響。20世紀(jì)90年代,人們在Fe/Cu,F(xiàn)e/Al,F(xiàn)e/Al,F(xiàn)e/Au,Co/Cu,Co/Ag和Co/Au 等納米結(jié)構(gòu)的多層膜中觀察到了顯著的巨磁阻效應(yīng),由于巨磁阻多層膜在高密度讀出磁頭、磁存儲元件上有廣泛的應(yīng)用前景,美國、日本和西歐都對發(fā)展巨磁電阻材料及其在高技術(shù)上的應(yīng)用投入很大的力量。
通常說的硬盤也被稱為磁盤,這是因為在硬盤中是利用磁介質(zhì)來存儲信息的。一般而言,在密封的硬盤內(nèi)腔中有若干個磁盤片,磁盤片的每一面都被以轉(zhuǎn)軸為軸心、以一定的磁密度為間隔劃分成多個磁道,每個磁道又進(jìn)而被劃分為若干個扇區(qū)。磁盤片的每個磁盤面都相應(yīng)有一個數(shù)據(jù)讀出頭。
簡單地說,當(dāng)數(shù)據(jù)讀出頭“掃描”過磁盤面的各個區(qū)域時,各個區(qū)域中記錄的不同磁信號就被轉(zhuǎn)換成電信號,電信號的變化進(jìn)而被表達(dá)為“0”和“1”,成為所有信息的原始“譯碼”。
伴隨著信息數(shù)字化的大潮,人們開始尋求不斷縮小硬盤體積同時提高硬盤容量的技術(shù)。而1988年發(fā)現(xiàn)的“巨磁電阻”效應(yīng)使得非常弱小的磁性變化就能導(dǎo)致巨大電阻變化的特殊效應(yīng)。這一發(fā)現(xiàn)解決了制造大容量小硬盤最棘手的問題:當(dāng)硬盤體積不斷變小,容量卻不斷變大時,勢必要求磁盤上每一個被劃分出來的獨立區(qū)域越來越小,這些區(qū)域所記錄的磁信號也就越來越弱。借助“巨磁電阻”效應(yīng),人們才得以制造出更加靈敏的數(shù)據(jù)讀出頭,使越來越弱的磁信號依然能夠被清晰讀出,并且轉(zhuǎn)換成清晰的電流變化。
1994年,IBM公司研制成巨磁電阻效應(yīng)的讀出磁頭,將磁盤記錄密度一下子提高了17倍,達(dá)5Gbit/in2,最近達(dá)到11Gbit/in2,從而在與光盤競爭中磁盤重新處于領(lǐng)先地位。由于巨磁電阻效應(yīng)大,易使器件小型化,廉價化,除讀出磁頭外同樣可應(yīng)用于測量位移,角度等傳感器中,可廣泛地應(yīng)用于數(shù)控機床,汽車測速,非接觸開關(guān),旋轉(zhuǎn)編碼器中,與光電等傳感器相比,它具有功耗小,可靠性高,體積小,能工作于惡劣的工作條件等優(yōu)點。利用巨磁電阻效應(yīng)在不同的磁化狀態(tài)具有不同電阻值的特點,可以制成隨機存儲器(MRAM),其優(yōu)點是在無電源的情況下可繼續(xù)保留信息。
巨磁電阻效應(yīng)在高技術(shù)領(lǐng)域應(yīng)用的另一個重要方面是微弱磁場探測器。隨著納米電子學(xué)的飛速發(fā)展,電子元件的微型化和高度集成化要求測量系統(tǒng)也要微型化。在21世紀(jì),超導(dǎo)量子相干器件、超微霍耳探測器和超微磁場探測器將成為納米電子學(xué)中的主要角色。其中以巨磁電阻效應(yīng)為基礎(chǔ)設(shè)計超微磁場傳感器,要求能探測10-2T至10-6T的磁通密度。如此低的磁通密度在過去是無法測量的,特別是在超微系統(tǒng)測量如此微弱的磁通密度十分困難,納米結(jié)構(gòu)的巨磁電阻器件可以完成這個任務(wù)。
無阻值電阻在電路中扮演什么角色?
零歐姆電阻不是為了把數(shù)字地和模擬地分開,只是使模擬地和數(shù)字地進(jìn)行電氣連接,因為模擬地和數(shù)字地畢竟屬于同一個網(wǎng)絡(luò),最終也還是要連在一起的。把數(shù)模地分開,只是工程師為了解決干擾的一種手段。用零歐姆電阻的方便之處就是它很容易拆卸,拆卸下來可以換其他的器件代替以觀察最終的效果進(jìn)行對比,而導(dǎo)線不能拆卸。
限流這種觀點,其實不太贊同,零歐姆電阻有阻抗但畢竟小,這得流過多大電流才起到限流作用?幾A?不現(xiàn)實吧,很多電路板達(dá)不到這個電流級別。反而有阻抗影響挺大吧,如果零歐電阻阻抗挺大,那在零歐姆上的電壓降產(chǎn)生共模干擾導(dǎo)致的問題不可忽視。
進(jìn)行數(shù)字地和模擬地之間的隔離,其實是一門挺有技術(shù)含量的事,屬于EMC的范疇。我不太贊同一些工程師說的,只要是數(shù)?;旌想娐肪捅仨殞?shù)字地和模擬地進(jìn)行地的分割,然后用個磁珠或零歐姆電阻連起來。具體問題還得具體分析。
我見過很多電路板,采用統(tǒng)一地,也就是不對地分割,當(dāng)然也就不存在用零歐電阻連接的問題,其EMC可以做得很好。反而一些采用了地分割的電路板,EMC很差。導(dǎo)致這種現(xiàn)象的原因是工程師對EMC本質(zhì)的理解偏差。其實EMC很關(guān)鍵一點就是環(huán)流路徑最小化,如果進(jìn)行地分割,就要非常注意,一旦信號線跨越地分割線,環(huán)流路徑必然增大,EMC性能變差。而采用統(tǒng)一地的電路板,事先必須對布局做足考慮,對電路模塊進(jìn)行物理分區(qū)(不分割),保證模塊都有自己的回路,就不會影響其他模塊,同時因為地沒有分割,保證了地的完整性。當(dāng)然具體細(xì)節(jié)太多了,就不一一介紹。
分割做得好,確實可以做到較好的數(shù)模隔離,但是不做分割,EMC不一定差。凡事沒有絕對,沒有哪一種是絕對的好,只是要根據(jù)具體的情況決定倒是要不要分割,目的是為了EMC性能,分割只是一種手段,而手段可以多種。還是那句話具體問題具體分析。
另外如果直接用導(dǎo)線連接,會通過很大的電流,兩邊的信號會互相干擾。并且在PCB布線時,很難將兩種地區(qū)分開。
零歐電阻可以很好的解決這個問題,它提供了一個很窄的電流通路 并且可以有效區(qū)分模擬地和數(shù)字地,利于單點接地的實現(xiàn)。其實零歐電阻也是存在阻抗的,因此可以限制電流。
用事實說話
個人lay過一塊使用了0Ω電阻的PCB,一塊陀螺儀的板子,有兩個GND,一個是正常的GND,另一個是專門給gyro用的GyroGND。
考慮用兩個GND的原因是因為板子比較小,各種通信接口和芯片都和gyro模塊堆在一起,于是覺得分成兩個GND會減少一些gyro讀數(shù)上的noise,但其實上發(fā)現(xiàn)不用這樣做,因為是那幫寫程序的沒寫好程序,后來程序改好了noise也沒了。
加了一個0Ω的原因也只是為了做layout的時候方便polygon(鋪銅),因為電阻兩端的電線會算作不同的網(wǎng)絡(luò)。(高亮網(wǎng)絡(luò)的時候polygon不會高亮,于是這樣子大家湊合著看吧……)
GyroGND的polygon:
?
GND的polygon: 一個是網(wǎng)格鋪,一個是全鋪,可以看到很明顯的分界線。
在遠(yuǎn)處用一個0Ω的電阻隔開: 如果不用0Ω的電阻隔開而想著lay成兩塊GND的話,鋪銅的時候會悲劇的,軟件會給你鋪到一起去。所以按照個人現(xiàn)在的經(jīng)驗來看,在GND網(wǎng)絡(luò)上加上0Ω的電阻只是為了把GND分成不同的區(qū)域,方便lay板,對降噪本身可能并沒有太顯著的影響。
了解零歐姆電阻:
1,在電路中沒有任何功能,只是在PCB上為了調(diào)試方便或兼容設(shè)計等原因。
2,可以做跳線用,如果某段線路不用,直接不貼該電阻即可(不影響外觀)
3,在匹配電路參數(shù)不確定的時候,以零歐姆代替,實際調(diào)試的時候,確定參數(shù),再以具體數(shù)值的元件代替。
4,想測某部分電路的耗電流的時候,可以去掉零ohm電阻,接上電流表,這樣方便測耗電流。
5,在布線時,如果實在布不過去了,也可以加一個零歐的電阻6,在高頻信號下,充當(dāng)電感或電容(與外部電路特性有關(guān))電感用,主要是解決EMC問題。如地與地,電源和IC Pin間
7,單點接地(指保護接地、工作接地、直流接地在設(shè)備上相互分開,各自成為獨立系統(tǒng)。)
8,熔絲作用 *模擬地和數(shù)字地單點接地*只要是地,最終都要接到一起,然后入大地。如果不接在一起就是“浮地”,存在壓差,容易積累電荷,造成靜電。地是參考零電 位,所有電壓都是參考地得出的,地的標(biāo)準(zhǔn)要一致,故各種地應(yīng)短接在一起。人們認(rèn)為大地能夠吸收所有電荷,始終維持穩(wěn)定,是最終的地參考點。雖然有些板子沒 有接大地,但發(fā)電廠是接大地的,板子上的電源最終還是會返回發(fā)電廠入地。如果把模擬地和數(shù)字地大面積直接相連,會導(dǎo)致互相干擾。不短接又不妥,理由如上有
四種方法解決此問題:
1、用磁珠連接
;2、用電容連接
;3、用電感連接;
4、用零歐姆電阻連接。磁珠的等效電路相當(dāng)于帶阻限波器,只對某個頻點的噪聲有顯著抑制作用,使用時需要預(yù)先估計噪點頻率,以便選用適當(dāng)型號。
對于頻率不確定或無法預(yù)知的情況,磁珠不合。電容隔直通交,造成浮地。電感體積大,雜散參數(shù)多,不穩(wěn)定。零歐電阻相當(dāng)于很窄的電流通路,能夠有效地限制環(huán)路電流,使噪聲得到抑制。電阻在所有頻帶上都有衰減作用(零歐電阻也有阻抗),這點比磁珠強。
*跨接時用于電流回路*當(dāng)分割電地平面后,造成信號最短回流路徑斷裂,此時,信號回路不得不繞道,形成很大的環(huán)路面積,電場和磁場的影響就變強了,容易干擾/被干擾。在分割區(qū)上跨接零歐電阻,可以提供較短的回流路徑,減小干擾。*配置電路*一般,產(chǎn)品上不要出現(xiàn)跳線和撥碼開關(guān)。有時用戶會亂動設(shè)置,易引起誤會,為了減少維護費用,應(yīng)用零歐電阻代替跳線等焊在板子上。空置跳線在高頻時相當(dāng)于天線,用貼片電阻效果好。*其他用途*布線時跨線;調(diào)試/測試用;臨時取代其他貼片器件;作為溫度補償器件。更多時候是出于EMC對策的需要。另外,零歐姆電阻比過孔的寄生電感小,而且過孔還會影響地平面(因為要挖孔)。方便軟件的分別布線區(qū)域范圍:主要功能是跳線,運用的目的主要是為了在PCB補線的時候軟件可以區(qū)分不同的區(qū)域。也就是說為了使的每一部分的電源和地有不同的回路,如果沒有這個電阻,軟件會亂連,導(dǎo)致的結(jié)果是比如數(shù)字地和模擬地混亂,數(shù)字電源和模擬電源的互相干擾等等。所以總結(jié)就是為了方便軟件的分別布線區(qū)域范圍。