資料介紹
Table of Contents
AD5272 FMC-SDP Interposer & Evaluation Board / Xilinx KC705 Reference Design
Supported Devices
Evaluation Boards
Overview
This document presents the steps to setup an environment for using the EVAL-AD5272SDZ evaluation board together with the Xilinx KC705 FPGA board and the Xilinx Embedded Development Kit (EDK). Below is presented a picture of the EVAL-AD5272SDZ Evaluation Board with the Xilinx KC705 board.
For component evaluation and performance purposes, as opposed to quick prototyping, the user is directed to use the part evaluation setup. This consists of:
- 1. A controller board like the SDP-B ( EVAL-SDP-CS1Z)
- 2. The component SDP compatible product evaluation board
- 3. Corresponding PC software ( shipped with the product evaluation board)
The SDP-B controller board is part of Analog Devices System Demonstration Platform (SDP). It provides a high speed USB 2.0 connection from the PC to the component evaluation board. The PC runs the evaluation software. Each evaluation board, which is an SDP compatible daughter board, includes the necessary installation file required for performance testing.
Note: it is expected that the analog performance on the two platforms may differ.
Below is presented a picture of SDP-B Controller Board with the EVAL-AD5272SDZ Evaluation Board.
The EVAL-AD5272SDZ evaluation board is a member of a growing number of boards available for the SDP. Designed to help customers evaluate performance or quickly prototype new AD5272 circuits and reduce design time, the EVAL-AD5272SDZ evaluation board can operate in single-supply and dual-supply mode and incorporates an internal power supply powered from the USB.
The AD5272 is a single-channel, 1024-position digital rheostat that combine industry leading variable resistor performance with nonvolatile memory (NVM) in a compact package. The AD5272 ensure less than 1% end-to-end resistor tolerance error and offer 50-times programmable (50-TP) memory. The guaranteed industry leading low resistor tolerance error feature simplifies open-loop applications as well as precision calibration and tolerance matching applications. The AD5272 device wiper settings are controllable through the I2C-compatible digital interface. Unlimited adjustments are allowed before programming the resistance value into the 50-TP memory. The AD5272 does not require any external voltage supply to facilitate fuse blow and there are 50 opportunities for permanent programming. During 50-TP activation, a permanent blow fuse command freezes the wiper position (analogous to placing epoxy on a mechanical trimmer).
More information
- AD5272 Product Info - pricing, samples, datasheet
Getting Started
The first objective is to ensure that you have all of the items needed and to install the software tools so that you are ready to create and run the evaluation project.
Required Hardware
- FMC-SDP adapter board
- EVAL-AD5272 evaluation board
Required Software
- Xilinx ISE 14.6.
- UART Terminal (Termite/Tera Term/Hyperterminal), baud rate 115200.
- The EVAL-AD5272 reference project for Xilinx KC705 FPGA.
Downloads
- Xilinx Boards Common Drivers: https://github.com/analogdevicesinc/no-OS/tree/master/platform_drivers/Xilinx/SDP_Common
- EDK KC705 Reference project: https://github.com/analogdevicesinc/fpgahdl_xilinx/tree/master/cf_sdp_kc705
Run the Demonstration Project
Hardware setup
Before connecting the ADI evaluation board to the Xilinx KC705 make sure that the VADJ_FPGA voltage of the KC705 is set to 3.3V. For more details on how to change the setting for VADJ_FPGA visit the Xilinx KC705 product page.
- Use the FMC-SDP interposer to connect the ADI evaluation board to the Xilinx KC705 board on the FMC LPC connector.
- Connect the JTAG and UART cables to the KC705 and power up the FPGA board.
Reference Project Overview
The following commands were implemented in this version of EVAL-AD5272 reference project for Xilinx KC705 FPGA board.
Command | Description |
---|---|
help? | Displays all available commands. |
reset! | Makes a software reset of the device. |
rdac= | Writes to the RDAC register. Accepted values: 0 .. 1024 (0 .. 255 for AD5274) - the value written to RDAC. |
rdac? | Displays the last written value in RDAC register. |
store! | Stores the RDAC setting to 50-TP. |
50TPValue? | Displays the contents of the selected 50-TP register. Accepted values: 0 .. 50 - selected 50-TP register. |
50TPAddress? | Displays the address of the last programmed 50-TP register. |
power= | Turns on/off the device. Accepted values: 1 - normal mode.(default) 0 - shutdown mode. |
power? | Displays the power status of the device. |
Commands can be executed using a serial terminal connected to the UART peripheral of Xilinx KC705 FPGA.
The following image shows a generic list of commands in a serial terminal connected to Xilinx KC705 FPGA's UART peripheral.
Software Project Setup
The hardware platform for each reference projects with FMC-SDP interposer and KC705 evaluation board is common. The next steps should be followed to recreate the software project of the reference design:
- First download the KC705 Reference project from Github on your computer. You can do this by clonning this repository: https://github.com/analogdevicesinc/fpgahdl_xilinx.
- From this entire repository you will use cf_sdp_kc705 folder. This is common for all KC705 projects.
- Open the Xilinx SDK. When the SDK starts, it asks you to provide a folder where to store the workspace. Any folder can be provided. Make sure that the path where it is located does not contain any spaces.
- In the SDK select the File→Import menu option to import the software projects into the workspace.
- In the Import window select the General→Existing Projects into Workspace option.
- In the Import Projects window select the cf_sdp_kc705 folder as root directory and check the Copy projects into workspace option. After the root directory is chosen the projects that reside in that directory will appear in the Projects list. Press Finish to finalize the import process.
- The Project Explorer window now shows the projects that exist in the workspace without software files.
- Now the software must be added in your project. For downloading the software, you must use 3 links from Github given in Downloads section. From there you'll download the specific driver, the specific commands and the Xilinx Boards Common Drivers(which are commons for all Xilinx boards). All the software files downloaded must be copied in src folder from sw folder.
- Before compilation in the file called Communication.h you have to uncomment the name of the device that you currently use. In the picture below there is an example of this, which works only with AD5629R project. For another device, uncomment only the respective name. You can have one driver working on multiple devices, so the drivers's name and the uncommented name may not be the same for every project.
- The SDK should automatically build the project and the Console window will display the result of the build. If the build is not done automatically, select the Project→Build Automatically menu option.
- If the project was built without any errors, you can program the FPGA and run the software application.
More information
- Example questions:
- An error occurred while fetching this feed: http://ez.analog.com/community/feeds/allcontent/atom?community=2061
- AD7656-1 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD7658-1 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD9833 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD5780 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD5684R FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD5449 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- CN0204 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- CN0271 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD7980 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD9838 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD7988-1 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD5443 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD7298 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD5757 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- AD7683 FMC-SDP轉(zhuǎn)接器和評估板/Xilinx KC705參考設(shè)計
- 使用Xilinx FPGA實現(xiàn)OFDM系統(tǒng) 850次閱讀
- 系統(tǒng)演示平臺簡化了從評估到原型設(shè)計的過渡 646次閱讀
- Xilinx FPGA的FMC介紹 5643次閱讀
- dfrobot可插拔傳感器轉(zhuǎn)接器簡介 1043次閱讀
- dfrobotWiiChuck轉(zhuǎn)接器簡介 1104次閱讀
- 飛凌嵌入式JTAG轉(zhuǎn)接板?介紹 1614次閱讀
- digilent FMC Pcam適配器介紹 2731次閱讀
- digilent FMC-HDMI:雙HDMI輸入擴展子板介紹 4286次閱讀
- 天嵌科技LVDS轉(zhuǎn)接板-TTL-LVDS轉(zhuǎn)接板規(guī)格 3772次閱讀
- 2.5 GSPS高性能數(shù)模轉(zhuǎn)換器——AD9739A DAC 4675次閱讀
- 關(guān)于FPGA的FMC接口的詳細介紹 1.1w次閱讀
- 系統(tǒng)演示平臺便于快速進行原型制作與評估 1504次閱讀
- Maxim為三款Xilinx FPGA參考設(shè)計提供電源管理方案 1163次閱讀
- 非插入式器件如何測量? 1573次閱讀
- ADI實驗室電路:500V共模電壓電流監(jiān)控器 2923次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費下載
- 0.00 MB | 1491次下載 | 免費
- 2單片機典型實例介紹
- 18.19 MB | 95次下載 | 1 積分
- 3S7-200PLC編程實例詳細資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識別和講解說明
- 4.28 MB | 18次下載 | 4 積分
- 5開關(guān)電源原理及各功能電路詳解
- 0.38 MB | 11次下載 | 免費
- 6100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 7基于單片機和 SG3525的程控開關(guān)電源設(shè)計
- 0.23 MB | 4次下載 | 免費
- 8基于AT89C2051/4051單片機編程器的實驗
- 0.11 MB | 4次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費
- 4LabView 8.0 專業(yè)版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費
- 5555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33562次下載 | 免費
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費
- 8開關(guān)電源設(shè)計實例指南
- 未知 | 21539次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537793次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191183次下載 | 免費
- 7十天學(xué)會AVR單片機與C語言視頻教程 下載
- 158M | 183277次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138039次下載 | 免費
評論
查看更多