如何使用深度神經(jīng)網(wǎng)絡(luò)和稀疏學(xué)習(xí)進(jìn)行極化SAR圖像分類
資料介紹
到目前為止,對極化SAR圖像的研究已經(jīng)經(jīng)歷了近三十年的時間,許多經(jīng)典的極化SAR圖像分類方法被廣泛應(yīng)用于各個領(lǐng)域,可以說,對極化SAR圖像的研究已經(jīng)取得了豐碩的成果。如今,極化SAR已經(jīng)逐漸民用化,使得對極化SAR圖像的白動解譯要求越來越高。盡管現(xiàn)在極化SAR圖像數(shù)據(jù)的獲取能力已經(jīng)得到了極大的提升,但是相應(yīng)的信息處理技術(shù)仍然有待發(fā)展。
本文主要研究基于深度學(xué)習(xí)和稀疏表示的極化SAR圖像分類方法。深度學(xué)習(xí)通過組合極化SAR的低層特征形成較為抽象的高層表示(類別屬性或特征),實(shí)現(xiàn)對復(fù)雜函數(shù)的高度逼近,以發(fā)現(xiàn)極化SAR的分布式特征表示,可以學(xué)習(xí)到原始數(shù)據(jù)的深層特征。而稀疏表示可以減小圖像的冗余度,有利于特征的有效提取。本文提出了三種方法來實(shí)現(xiàn)極化SAR圖像的分類。本文首先利用深度網(wǎng)絡(luò)和稀疏表示對極化SAR圖像進(jìn)行特征提取,然后利用SVM分類器進(jìn)行分類,獲得分類結(jié)果。主要工作如下:
1)提出了一種基于稀疏主分量分析和稀疏自動編碼器的極化SAR圖像分類方法。首先利用SPCA對極化SAR原始數(shù)據(jù)進(jìn)行降維和稀疏表示,克服了現(xiàn)有技術(shù)中待處理的高維數(shù)據(jù)的無關(guān)性和冗余性,然后通過SAE網(wǎng)絡(luò)挖掘極化SAR數(shù)據(jù)的深層特征,對原始數(shù)據(jù)達(dá)到高精度逼近,最后利用SVM分類器進(jìn)行對學(xué)習(xí)到的特征進(jìn)行分類。由于極化SAR數(shù)據(jù)維數(shù)較高,利用SPCA對其進(jìn)行降維處理可以在保持分類精確度的前提下極大地縮短算法的運(yùn)行時間。除此之外,通過稀疏自動編碼器學(xué)習(xí)到的特征可以大大地提高圖像分類的精確度。
2)提出了一種基于CS稀疏表示和深度棧式網(wǎng)絡(luò)的極化SAR圖像分類方法?;趬嚎s感知的思想構(gòu)造了一個兩層的棧式網(wǎng)絡(luò)來對極化SAR原始數(shù)據(jù)進(jìn)行特征學(xué)習(xí),找到更能描述數(shù)據(jù)的結(jié)構(gòu)特征。在本方法中,我們首先用兩層棧式網(wǎng)絡(luò)對極化SAR圖像原始數(shù)據(jù)進(jìn)行特征提取,然后利用SVM分類器進(jìn)行對獲得的特征進(jìn)行分類,得到最終分類結(jié)果。實(shí)驗(yàn)表明,采用本方法對極化SAR圖像進(jìn)行分類可以得到較好的結(jié)果。
3)提出了一種基于SPCANet的極化SAR圖像分類方法?;谏疃葘W(xué)習(xí)的思想構(gòu)造了一個兩層的網(wǎng)絡(luò)來對極化SAR原始數(shù)據(jù)進(jìn)行特征學(xué)習(xí),以獲得對極化SAR數(shù)據(jù)較好的表述形式,然后利用SVM分類器進(jìn)行對學(xué)習(xí)到的特征進(jìn)行分類,實(shí)驗(yàn)表明,該方法計算量小,簡單有效,容易理解,并具有普適性。
- 深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)層級分解綜述 5次下載
- 3小時學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)課件下載 0次下載
- 綜述深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)模型應(yīng)用及發(fā)展 20次下載
- 基于深度神經(jīng)網(wǎng)絡(luò)的圖像語義分割方法 11次下載
- 基于特征交換的卷積神經(jīng)網(wǎng)絡(luò)圖像分類算法 27次下載
- 分析總結(jié)基于深度神經(jīng)網(wǎng)絡(luò)的圖像語義分割方法 21次下載
- 基于深度神經(jīng)網(wǎng)絡(luò)的文本分類分析 37次下載
- 基于多孔卷積神經(jīng)網(wǎng)絡(luò)的圖像深度估計模型 5次下載
- 如何使用深度卷積神經(jīng)網(wǎng)絡(luò)改進(jìn)服裝圖像分類檢索算法 6次下載
- 使用多孔卷積神經(jīng)網(wǎng)絡(luò)解決機(jī)器學(xué)習(xí)的圖像深度不準(zhǔn)確的方法說明 10次下載
- 《神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)》中文版電子教材免費(fèi)下載 0次下載
- 面向大規(guī)模圖像分類的深度卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)化 3次下載
- 循環(huán)神經(jīng)網(wǎng)絡(luò)用于SAR圖像場景分類 2次下載
- 《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》講義 0次下載
- 基于yamaguchi分解模型的全極化SAR圖像分類
- 殘差網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)嗎 713次閱讀
- 簡單認(rèn)識深度神經(jīng)網(wǎng)絡(luò) 721次閱讀
- BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)機(jī)制 205次閱讀
- BP神經(jīng)網(wǎng)絡(luò)在語言特征信號分類中的應(yīng)用 182次閱讀
- 深度神經(jīng)網(wǎng)絡(luò)概述及其應(yīng)用 334次閱讀
- 深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別 307次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別 881次閱讀
- 深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 545次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)的基本概念和工作原理 1204次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)在文本分類領(lǐng)域的應(yīng)用 360次閱讀
- 神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用 395次閱讀
- 神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些 324次閱讀
- 實(shí)現(xiàn)圖像識別神經(jīng)網(wǎng)絡(luò)的步驟 750次閱讀
- 詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 1574次閱讀
- 圖像識別中的深度學(xué)習(xí) 4866次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費(fèi)下載
- 0.00 MB | 1491次下載 | 免費(fèi)
- 2單片機(jī)典型實(shí)例介紹
- 18.19 MB | 95次下載 | 1 積分
- 3S7-200PLC編程實(shí)例詳細(xì)資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識別和講解說明
- 4.28 MB | 18次下載 | 4 積分
- 5開關(guān)電源原理及各功能電路詳解
- 0.38 MB | 11次下載 | 免費(fèi)
- 6100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 7基于單片機(jī)和 SG3525的程控開關(guān)電源設(shè)計
- 0.23 MB | 4次下載 | 免費(fèi)
- 8基于AT89C2051/4051單片機(jī)編程器的實(shí)驗(yàn)
- 0.11 MB | 4次下載 | 免費(fèi)
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費(fèi)
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費(fèi)
- 4LabView 8.0 專業(yè)版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費(fèi)
- 5555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33562次下載 | 免費(fèi)
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費(fèi)
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費(fèi)
- 8開關(guān)電源設(shè)計實(shí)例指南
- 未知 | 21539次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費(fèi)
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537793次下載 | 免費(fèi)
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費(fèi)
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費(fèi)
- 6電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191183次下載 | 免費(fèi)
- 7十天學(xué)會AVR單片機(jī)與C語言視頻教程 下載
- 158M | 183277次下載 | 免費(fèi)
- 8proe5.0野火版下載(中文版免費(fèi)下載)
- 未知 | 138039次下載 | 免費(fèi)
評論
查看更多