資料介紹
針對(duì)現(xiàn)有圖匹配算法對(duì)拓?fù)浣Y(jié)構(gòu)節(jié)點(diǎn)特征挖掘不夠充分問(wèn)題,提出了一種用于非精確圖匹配的改進(jìn)圖卷積神徑網(wǎng)絡(luò)(GCN)模型。首先,考慮到選取的節(jié)點(diǎn)應(yīng)具有較強(qiáng)的代表性,利用社交網(wǎng)絡(luò)分析中三種衡量網(wǎng)絡(luò)節(jié)點(diǎn)中心度的方法去獲取圖中節(jié)點(diǎn)的中心度,按照節(jié)點(diǎn)的中心度大小排序。其次,針對(duì)圖的節(jié)點(diǎn)和邊具有相應(yīng)的領(lǐng)域特征,把拓?fù)浣Y(jié)構(gòu)映射到網(wǎng)格結(jié)構(gòu)的同時(shí),應(yīng)最大化表示節(jié)點(diǎn)之間的關(guān)系屬性,在節(jié)點(diǎn)鄰域大不滿足感受野閾值時(shí),對(duì)節(jié)點(diǎn)鄰域進(jìn)行中心度排序并按中心度大小依次獲取鄰域節(jié)點(diǎn),直到鄰域大小滿足感受野閾值,進(jìn)而利用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行圖的分類識(shí)別。最后,在多個(gè)標(biāo)準(zhǔn)圖數(shù)據(jù)集上進(jìn)行了訓(xùn)練和測(cè)試。實(shí)驗(yàn)結(jié)果表明,改進(jìn)的GCN模型在圖匹配問(wèn)題上較同類方法具有更高的識(shí)別率。
- 基于卷積神經(jīng)網(wǎng)絡(luò)的雷達(dá)目標(biāo)檢測(cè)方法綜述 61次下載
- 基于卷積神經(jīng)網(wǎng)絡(luò)等的碳鋼石墨化智能評(píng)級(jí) 56次下載
- 基于卷積神經(jīng)網(wǎng)絡(luò)模型的Hi-C數(shù)據(jù)分辨率 32次下載
- 基于卷積神經(jīng)網(wǎng)絡(luò)的相似度計(jì)算模型 19次下載
- 深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)層級(jí)分解綜述 5次下載
- 基于剪枝與量化的卷積神經(jīng)網(wǎng)絡(luò)壓縮算法 6次下載
- 基于深度圖卷積膠囊網(wǎng)絡(luò)融合的圖分類模型 9次下載
- MATLAB實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的源代碼 16次下載
- 緊湊的卷積神經(jīng)網(wǎng)絡(luò)模型研究綜述 9次下載
- 綜述深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)模型應(yīng)用及發(fā)展 20次下載
- 神經(jīng)網(wǎng)絡(luò)到卷積神經(jīng)網(wǎng)絡(luò)的原理 7次下載
- 結(jié)合改進(jìn)Fisher判別準(zhǔn)則與GRV模塊的卷積神經(jīng)網(wǎng)絡(luò) 4次下載
- 基于多孔卷積神經(jīng)網(wǎng)絡(luò)的圖像深度估計(jì)模型 5次下載
- 如何使用混合卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)進(jìn)行入侵檢測(cè)模型的設(shè)計(jì) 19次下載
- 基于卷積神經(jīng)網(wǎng)絡(luò)的圖像標(biāo)注模型 4次下載
- 卷積神經(jīng)網(wǎng)絡(luò)共包括哪些層級(jí) 384次閱讀
- 全卷積神經(jīng)網(wǎng)絡(luò)的工作原理和應(yīng)用 374次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)的壓縮方法 157次閱讀
- BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系 530次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)的卷積操作 281次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別 863次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)的基本概念和工作原理 1203次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu) 249次閱讀
- 詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 1557次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)_卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練過(guò)程 1.8w次閱讀
- 詳解卷積神經(jīng)網(wǎng)絡(luò)卷積過(guò)程 1.7w次閱讀
- 一種用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò) 9742次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)為什么會(huì)這么有效?分析卷積神經(jīng)網(wǎng)絡(luò)背后的奧秘 2.9w次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析-LeNet 2687次閱讀
- 【科普】卷積神經(jīng)網(wǎng)絡(luò)(CNN)基礎(chǔ)介紹 1.1w次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費(fèi)下載
- 0.00 MB | 1490次下載 | 免費(fèi)
- 2單片機(jī)典型實(shí)例介紹
- 18.19 MB | 92次下載 | 1 積分
- 3S7-200PLC編程實(shí)例詳細(xì)資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識(shí)別和講解說(shuō)明
- 4.28 MB | 18次下載 | 4 積分
- 5開關(guān)電源原理及各功能電路詳解
- 0.38 MB | 10次下載 | 免費(fèi)
- 6基于AT89C2051/4051單片機(jī)編程器的實(shí)驗(yàn)
- 0.11 MB | 4次下載 | 免費(fèi)
- 7藍(lán)牙設(shè)備在嵌入式領(lǐng)域的廣泛應(yīng)用
- 0.63 MB | 3次下載 | 免費(fèi)
- 89天練會(huì)電子電路識(shí)圖
- 5.91 MB | 3次下載 | 免費(fèi)
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費(fèi)
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費(fèi)
- 4LabView 8.0 專業(yè)版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費(fèi)
- 5555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33562次下載 | 免費(fèi)
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費(fèi)
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費(fèi)
- 8開關(guān)電源設(shè)計(jì)實(shí)例指南
- 未知 | 21539次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費(fèi)
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537791次下載 | 免費(fèi)
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費(fèi)
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 5Altium DXP2002下載入口
- 未知 | 233045次下載 | 免費(fèi)
- 6電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191183次下載 | 免費(fèi)
- 7十天學(xué)會(huì)AVR單片機(jī)與C語(yǔ)言視頻教程 下載
- 158M | 183277次下載 | 免費(fèi)
- 8proe5.0野火版下載(中文版免費(fèi)下載)
- 未知 | 138039次下載 | 免費(fèi)
評(píng)論
查看更多