決策樹(shù)是最重要的機(jī)器學(xué)習(xí)算法之一,其可被用于分類(lèi)和回歸問(wèn)題。本文中,我們將介紹分類(lèi)部分。
2020-10-12 16:39:341112 在這篇文章中,分享一些最常用的機(jī)器學(xué)習(xí)算法。
2017-10-14 14:24:008793 隨機(jī)森林是一種靈活且易于使用的機(jī)器學(xué)習(xí)算法,即便沒(méi)有超參數(shù)調(diào)優(yōu),也可以在大多數(shù)情況下得到很好的結(jié)果。它也是最常用的算法之一,因?yàn)樗芎?jiǎn)易,既可用于分類(lèi)也能用于回歸任務(wù)。 在這篇文章中,你將了解到隨機(jī)森林算法的工作原理以及適用范圍。
2018-03-14 16:10:16315226 logistic回歸是一種廣義的線性回歸,通過(guò)構(gòu)造回歸函數(shù),利用機(jī)器學(xué)習(xí)來(lái)實(shí)現(xiàn)分類(lèi)或者預(yù)測(cè)。 原理 上一文簡(jiǎn)單介紹了線性回歸,與邏輯回歸的原理是類(lèi)似的。 預(yù)測(cè)函數(shù)(h)。該函數(shù)就是分類(lèi)函數(shù),用來(lái)預(yù)測(cè)
2020-09-29 15:17:402078 算法涉及到一些對(duì)矩陣的操作,例如矩陣乘法和求逆矩陣。請(qǐng)給出一個(gè)簡(jiǎn)單的數(shù)學(xué)證明,說(shuō)明為什么這種機(jī)器學(xué)習(xí)算法的 mini-batch 版本可能比在整個(gè)數(shù)據(jù)集上進(jìn)行訓(xùn)練的計(jì)算效率更高?(提示:矩陣乘法的時(shí)間
2018-09-29 09:39:54
logistic 回歸(內(nèi)附推導(dǎo))
2019-08-06 11:36:28
摘要:通過(guò)分析ZigBee協(xié)議中Cluster-Tree和AODVjr算法的優(yōu)缺點(diǎn),提出一種基于Cluster-Tree+AODVjr的優(yōu)化路由算法。該算法利用ZigB ee協(xié)議中的鄰居表,通過(guò)定義
2019-07-12 08:07:19
回歸算法之邏輯回歸
2020-05-21 16:25:15
回歸是數(shù)學(xué)建模、分類(lèi)和預(yù)測(cè)中最古老但功能非常強(qiáng)大的工具之一。回歸在工程、物理學(xué)、生物學(xué)、金融、社會(huì)科學(xué)等各個(gè)領(lǐng)域都有應(yīng)用,是數(shù)據(jù)科學(xué)家常用的基本工具。回歸通常是機(jī)器學(xué)習(xí)中使用的第一個(gè)算法。通過(guò)學(xué)習(xí)
2020-07-28 14:36:05
式子吧,不然看一些相關(guān)的論文可就看不懂了,這個(gè)系列主要將會(huì)著重于去機(jī)器學(xué)習(xí)的數(shù)學(xué)描述這個(gè)部分,將會(huì)覆蓋但不一定局限于回歸、聚類(lèi)、分類(lèi)等算法。回歸與梯度下降:回歸在數(shù)學(xué)上來(lái)說(shuō)是給定一個(gè)點(diǎn)集,能夠用一條曲線
2018-10-15 10:19:03
機(jī)器學(xué)習(xí)算法(1)——Logistic Regression
2020-06-09 13:30:03
機(jī)器學(xué)習(xí)算法如何用于制造無(wú)人駕駛汽車(chē)
2021-03-18 06:27:18
機(jī)器學(xué)習(xí) - 期望最大(EM)算法
2020-05-21 14:31:34
機(jī)器學(xué)習(xí)機(jī)器學(xué)習(xí)100天(5) --- k-近鄰算法(k-NN)
2020-05-15 15:06:29
機(jī)器學(xué)習(xí):高級(jí)算法課程學(xué)習(xí)總結(jié)
2020-05-05 17:17:16
`轉(zhuǎn)一篇好資料機(jī)器學(xué)習(xí)算法可以分為三大類(lèi):監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)。監(jiān)督學(xué)習(xí)可用于一個(gè)特定的數(shù)據(jù)集(訓(xùn)練集)具有某一屬性(標(biāo)簽),但是其他數(shù)據(jù)沒(méi)有標(biāo)簽或者需要預(yù)測(cè)標(biāo)簽的情況。無(wú)監(jiān)督學(xué)習(xí)可用
2017-04-18 18:28:36
常見(jiàn)線性回歸理論與算法實(shí)現(xiàn)
2019-10-29 11:09:03
關(guān)于機(jī)器學(xué)習(xí)的相關(guān)算法。正版資源,免費(fèi)看的。
2017-08-24 22:14:36
經(jīng)典機(jī)器學(xué)習(xí)算法介紹章節(jié)目標(biāo):機(jī)器學(xué)習(xí)是人工智能的重要技術(shù)之一,詳細(xì)了解機(jī)器學(xué)習(xí)的原理、機(jī)制和方法,為學(xué)習(xí)深度學(xué)習(xí)與遷移學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)。二、深度學(xué)習(xí)簡(jiǎn)介與經(jīng)典網(wǎng)絡(luò)結(jié)構(gòu)介紹神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介神經(jīng)網(wǎng)絡(luò)組件簡(jiǎn)介
2022-04-28 18:56:07
。監(jiān)督學(xué)習(xí)算法主要包括線性回歸(linear regression)、對(duì)數(shù)幾率回歸(logistic regression,又譯作邏輯回歸、邏輯斯蒂回歸)和神經(jīng)網(wǎng)絡(luò)(neural network)。雖然
2018-11-30 16:45:03
轉(zhuǎn)本文主要回顧下幾個(gè)常用算法的適應(yīng)場(chǎng)景及其優(yōu)缺點(diǎn)!機(jī)器學(xué)習(xí)算法太多了,分類(lèi)、回歸、聚類(lèi)、推薦、圖像識(shí)別領(lǐng)域等等,要想找到一個(gè)合適算法真的不容易,所以在實(shí)際應(yīng)用中,我們一般都是采用啟發(fā)式學(xué)習(xí)方式來(lái)實(shí)驗(yàn)
2016-09-27 10:48:01
機(jī)器人的優(yōu)缺點(diǎn)有哪些?機(jī)器人是由哪些部分組成的?
2021-10-11 07:51:29
以下是兩位網(wǎng)友的回答,稍微有所調(diào)整:RanHe的回答:在討論電磁仿真前,先要敬仰前輩。計(jì)算電磁學(xué)從大的方向可以分為兩大類(lèi):全波仿真算法,高頻算法。全波仿真是一種精確算法,但是非常消耗計(jì)算資源。一
2018-08-04 09:06:12
]目錄:第一部分 分類(lèi)第1章 機(jī)器學(xué)習(xí)基礎(chǔ) 2第2章 k-近鄰算法 15第3章 決策樹(shù) 32第4章 基于概率論的分類(lèi)方法:樸素貝葉斯 53第5章 Logistic回歸 73第6章
2017-06-01 15:49:24
電子發(fā)燒友總結(jié)了以“算法”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對(duì)各位有所幫助?。c(diǎn)擊標(biāo)題即可進(jìn)入頁(yè)面下載相關(guān)資料)經(jīng)典算法大全(51個(gè)C語(yǔ)言算法+單片機(jī)常用算法+機(jī)器學(xué)十大算法)11種常見(jiàn)
2019-05-09 17:06:40
是實(shí)現(xiàn)人工智能的一個(gè)途徑,即以機(jī)器學(xué)習(xí)為手段解決人工智能中的問(wèn)題。1.在維基百科中,機(jī)器學(xué)習(xí)有下面幾種定義:機(jī)器學(xué)習(xí)是一門(mén)人工智能的科學(xué),該領(lǐng)域的主要研究對(duì)象是人工智能,特別是如何在經(jīng)驗(yàn)學(xué)習(xí)中改善具體算法
2017-06-23 13:51:15
目錄人工智能基本概念機(jī)器學(xué)習(xí)算法1. 決策樹(shù)2. KNN3. KMEANS4. SVM5. 線性回歸深度學(xué)習(xí)算法1. BP2. GANs3. CNN4. LSTM應(yīng)用人工智能基本概念數(shù)據(jù)集:訓(xùn)練集
2021-09-06 08:21:17
假設(shè)函數(shù):代價(jià)函數(shù):利用極大似然估計(jì)代價(jià)函數(shù) 實(shí)現(xiàn)了凸函數(shù)特征 梯度下降算法:設(shè)定初始值收斂至局部最小值
2018-10-18 12:25:14
單變量線性回歸算法,利用Batch梯度梯度下降算法迭代計(jì)算得到誤差最小的代價(jià)函數(shù)theta0,theta1。調(diào)節(jié)學(xué)習(xí)率a可以觀察擬合得到的函數(shù)和代價(jià)函數(shù)誤差收斂情況。
2018-10-02 21:48:58
今天我們用C語(yǔ)言實(shí)現(xiàn)一個(gè)簡(jiǎn)單的線性回歸算法;在代碼前面我們?cè)诨仡?b class="flag-6" style="color: red">一下線性回歸。線性回歸是回歸問(wèn)題中的一種,線性回歸假設(shè)目標(biāo)值與特征是線性相關(guān)的,即滿(mǎn)足一個(gè)多元一次方程式。通過(guò)構(gòu)建損失函數(shù),來(lái)求解損失
2021-07-20 06:34:33
些演示用到了該庫(kù)。另一個(gè)基于JavaScript的機(jī)器學(xué)習(xí)庫(kù),沒(méi)有前一個(gè)功能多,也沒(méi)有前一個(gè)活躍,但是有很好的演示不錯(cuò)的演示,有三種回歸和一個(gè)聚類(lèi)如果你像想要自己構(gòu)建機(jī)器學(xué)的算法,可以用到的一些數(shù)學(xué)基礎(chǔ)類(lèi)
2019-03-07 20:18:53
現(xiàn)在人工智能非?;鸨?,機(jī)器學(xué)習(xí)應(yīng)該算是人工智能里面的一個(gè)子領(lǐng)域,而其中有一塊是對(duì)文本進(jìn)行分析,對(duì)數(shù)據(jù)進(jìn)行深入的挖掘提取一些特征值,然后用一些算法去學(xué)習(xí),訓(xùn)練,分析,甚至還能預(yù)測(cè),那么Python中常
2018-05-10 15:20:21
本文介紹了幾類(lèi)常用的無(wú)線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法,并比較了其優(yōu)缺點(diǎn)。
2021-06-03 06:41:59
轉(zhuǎn)帖機(jī)器學(xué)習(xí)算法數(shù)不勝數(shù),要想找到一個(gè)合適的算法并不是一件簡(jiǎn)單的事情。通常在對(duì)精度要求較高的情況下,最好的方法便是通過(guò)交叉驗(yàn)證來(lái)對(duì)各個(gè)算法一一嘗試,進(jìn)行比較后再調(diào)整參數(shù)以確保每個(gè)算法都能達(dá)到最優(yōu)解
2017-12-02 15:40:40
,我們想要介紹另一種分類(lèi)算法的方法,即通過(guò)機(jī)器學(xué)習(xí)所負(fù)責(zé)的任務(wù)來(lái)分類(lèi)。 機(jī)器學(xué)習(xí)的任務(wù)1.回歸回歸是一種用于建模和預(yù)測(cè)連續(xù)數(shù)值變量的監(jiān)督學(xué)習(xí)任務(wù)。例如預(yù)測(cè)房地產(chǎn)價(jià)格,股價(jià)變動(dòng)或?qū)W生考試分?jǐn)?shù)。 回歸任務(wù)
2019-09-22 08:30:00
有沒(méi)有搞機(jī)器學(xué)習(xí)、人工智能相關(guān)的算法研究的???自己一個(gè)人搞感覺(jué)挺難的,希望找到志同道合的朋友,相互探討。
2016-02-26 09:56:00
learning),又稱(chēng)再勵(lì)學(xué)習(xí)、評(píng)價(jià)學(xué)習(xí),學(xué)習(xí)不是單一方法,而是一種機(jī)器學(xué)習(xí)方式,在智能控制機(jī)器人及分析預(yù)測(cè)等領(lǐng)域有許多應(yīng)用。 強(qiáng)化學(xué)習(xí)例子:馬爾可夫決策過(guò)程 通用機(jī)器學(xué)習(xí)算法列表 1. 線性回歸
2018-10-23 14:31:12
有趣的,便于科普。 以后有時(shí)間再對(duì)單個(gè)算法做深入地解析。今天的算法如下:決策樹(shù)隨機(jī)森林算法邏輯回歸SVM樸素貝葉斯K最近鄰算法K均值算法Adaboost 算法神經(jīng)網(wǎng)絡(luò)馬爾可夫 1. 決策樹(shù)根據(jù)一
2017-08-02 16:58:02
職位描述:1. 負(fù)責(zé)計(jì)算機(jī)視覺(jué)&機(jī)器學(xué)習(xí)(包括深度學(xué)習(xí))算法的開(kāi)發(fā)與性能提升,負(fù)責(zé)下述研究課題中的一項(xiàng)或多項(xiàng),包括但不限于:人臉識(shí)別、檢測(cè)、活體、跟蹤、分類(lèi)、語(yǔ)義分割、深度估計(jì)、圖像處理
2017-12-07 14:34:41
提出了一種基于Logistic映射和Arnold變換的DCT域 數(shù)字水印 算法。利用Arnold變換將原始水印圖像進(jìn)行置亂,然后對(duì)圖像進(jìn)行分塊DCT變換,結(jié)合Logistic映射控制水印信息的嵌入位置,把置亂后
2011-08-15 11:24:4121 本文將帶你遍歷機(jī)器學(xué)習(xí)領(lǐng)域最受歡迎的算法。系統(tǒng)地了解這些算法有助于進(jìn)一步掌握機(jī)器學(xué)習(xí)。當(dāng)然,本文收錄的算法并不完全,分類(lèi)的方式也不唯一。
2018-06-30 04:24:003645 機(jī)器學(xué)習(xí)算法之最優(yōu)化方法
2017-09-04 10:05:100 機(jī)器學(xué)習(xí)算法數(shù)不勝數(shù),要想找到一個(gè)合適的算法并不是一件簡(jiǎn)單的事情。通常在對(duì)精度要求較高的情況下,最好的方法便是通過(guò)交叉驗(yàn)證來(lái)對(duì)各個(gè)算法一一嘗試,進(jìn)行比較后再調(diào)整參數(shù)以確保每個(gè)算法都能達(dá)到最優(yōu)解,并從
2017-09-19 15:17:137 本文將簡(jiǎn)要介紹Spark機(jī)器學(xué)習(xí)庫(kù)(Spark MLlibs APIs)的各種機(jī)器學(xué)習(xí)算法,主要包括:統(tǒng)計(jì)算法、分類(lèi)算法、聚類(lèi)算法和協(xié)同過(guò)濾算法,以及各種算法的應(yīng)用。 你不是一個(gè)數(shù)據(jù)科學(xué)家。根據(jù)
2017-09-28 16:44:431 作為『十大機(jī)器學(xué)習(xí)算法』之一的K-近鄰(K-Nearest Neighbors)算法是思想簡(jiǎn)單、易于理解的一種分類(lèi)和回歸算法。
2018-01-02 14:56:035667 機(jī)器學(xué)習(xí)起源于人工智能,可以賦予計(jì)算機(jī)以傳統(tǒng)編程所無(wú)法實(shí)現(xiàn)的能力,比如飛行器的自動(dòng)駕駛、人臉識(shí)別、計(jì)算機(jī)視覺(jué)和數(shù)據(jù)挖掘等。機(jī)器學(xué)習(xí)的算法很多。很多時(shí)候困惑人們的是,很多算法是一類(lèi)算法,而有些算法又是
2018-01-05 17:36:103101 傳統(tǒng)基于置換和混淆的圖像加密算法,置換效率低且難以抵抗已知/選擇明文攻擊,針對(duì)此問(wèn)題,提出基于迷宮置換和Logistic映射的圖像加密算法。為提高置換效率,采用深度優(yōu)先搜索(DFS)迷宮生成算法
2018-02-01 16:12:100 機(jī)器學(xué)習(xí)算法數(shù)不勝數(shù),要想找到一個(gè)合適的算法并不是一件簡(jiǎn)單的事情。通常在對(duì)精度要求較高的情況下,最好的方法便是通過(guò)交叉驗(yàn)證來(lái)對(duì)各個(gè)算法一一嘗試,進(jìn)行比較后再調(diào)整參數(shù)以確保每個(gè)算法都能達(dá)到最優(yōu)解,并從
2018-02-02 15:48:225608 機(jī)器學(xué)習(xí)無(wú)疑是當(dāng)前數(shù)據(jù)分析領(lǐng)域的一個(gè)熱點(diǎn)內(nèi)容。很多人在平時(shí)的工作中都或多或少會(huì)用到機(jī)器學(xué)習(xí)的算法。這里小編為您總結(jié)一下常見(jiàn)的機(jī)器學(xué)習(xí)算法,以供您在工作和學(xué)習(xí)中參考。
2018-02-02 17:20:461552 算法永遠(yuǎn)是一段代碼的靈魂,面對(duì)海量的機(jī)器學(xué)習(xí)算法,萌新最?lèi)?ài)問(wèn)的是,“我該選什么算法?”
2018-03-29 14:10:397887 對(duì)于機(jī)器學(xué)習(xí)/數(shù)據(jù)科學(xué)的初學(xué)者來(lái)說(shuō),線性回歸,或者Logistic回歸是許多人在建立預(yù)測(cè)模型時(shí)接觸的第一/第二種方法。由于這兩種算法適用性極廣,有些人甚至在走出校門(mén)當(dāng)上數(shù)據(jù)分析師后還固執(zhí)地認(rèn)為回歸只有這兩種形式。那么事實(shí)真的是這樣嗎?
2018-04-27 15:55:443980 and Unsupervised Learning 我們已經(jīng)學(xué)習(xí)了許多機(jī)器學(xué)習(xí)算法,包括線性回歸,Logistic回歸,神經(jīng)網(wǎng)絡(luò)以及支持向量機(jī)。這些算法都有一個(gè)共同點(diǎn),即給出的訓(xùn)練樣本自身帶有標(biāo)記。比如
2018-05-01 17:43:0012211 K近鄰KNN(k-Nearest Neighbor)算法,也叫K最近鄰算法,1968年由 Cover 和 Hart 提出,是機(jī)器學(xué)習(xí)算法中比較成熟的算法之一。K近鄰算法使用的模型實(shí)際上對(duì)應(yīng)于對(duì)特征空間的劃分。KNN算法不僅可以用于分類(lèi),還可以用于回歸。
2018-05-29 06:53:002416 人工智能機(jī)器學(xué)習(xí)有關(guān)算法內(nèi)容,人工智能之機(jī)器學(xué)習(xí)主要有三大類(lèi):1)分類(lèi);2)回歸;3)聚類(lèi)。今天我們重點(diǎn)探討一下PCA算法。 PCA(主成分分析)是十大經(jīng)典機(jī)器學(xué)習(xí)算法之一。PCA是Pearson在1901年提出的,后來(lái)由Hotelling在1933年加以發(fā)展提出的一種多變量的統(tǒng)計(jì)方法。
2018-06-27 17:23:002985 在我們?nèi)粘I钪兴玫降耐扑]系統(tǒng)、智能圖片美化應(yīng)用和聊天機(jī)器人等應(yīng)用中,各種各樣的機(jī)器學(xué)習(xí)和數(shù)據(jù)處理算法正盡職盡責(zé)地發(fā)揮著自己的功效。本文篩選并簡(jiǎn)單介紹了一些最常見(jiàn)算法類(lèi)別,還為每一個(gè)類(lèi)別列出了一些實(shí)際的算法并簡(jiǎn)單介紹了它們的優(yōu)缺點(diǎn)。
2018-11-25 11:44:189851 本文檔的主要內(nèi)容詳細(xì)介紹的是機(jī)器學(xué)習(xí)教程之機(jī)器學(xué)習(xí)10大經(jīng)典算法的詳細(xì)資料講解主要內(nèi)容包括了:1、C4.5,2、The k-means algorithm3、SVM 4、Apriori算法5、最大
2018-12-14 15:03:5024 機(jī)器學(xué)習(xí)性能評(píng)價(jià)標(biāo)準(zhǔn)是模型優(yōu)化的前提,在設(shè)計(jì)機(jī)器學(xué)習(xí)算法過(guò)程中,不同的問(wèn)題需要用到不同的評(píng)價(jià)標(biāo)準(zhǔn),本文對(duì)機(jī)器學(xué)習(xí)算法常用指標(biāo)進(jìn)行了總結(jié)。
2019-02-13 15:09:193945 回歸分析在機(jī)器學(xué)習(xí)領(lǐng)域應(yīng)用非常廣泛,例如,商品的銷(xiāo)量預(yù)測(cè)問(wèn)題,交通流量預(yù)測(cè)問(wèn)題。那么,如何為這些回歸問(wèn)題選擇最合適的機(jī)器學(xué)習(xí)算法呢?
2019-05-03 09:39:002571 本文的目的,是務(wù)實(shí)、簡(jiǎn)潔地盤(pán)點(diǎn)一番當(dāng)前機(jī)器學(xué)習(xí)算法。
2019-07-10 17:30:372323 本文主要介紹一個(gè)被廣泛使用的機(jī)器學(xué)習(xí)分類(lèi)算法,K-nearest neighbors(KNN),中文叫K近鄰算法。
2019-10-31 17:18:145657 根據(jù)受歡迎程度,線性回歸和邏輯回歸經(jīng)常是我們做預(yù)測(cè)模型時(shí),且第一個(gè)學(xué)習(xí)的算法。但是如果認(rèn)為回歸就兩個(gè)算法,就大錯(cuò)特錯(cuò)了。事實(shí)上我們有許多類(lèi)型的回歸方法可以去建模。每一個(gè)算法都有其重要性和特殊性。
2020-01-19 17:22:003568 機(jī)器學(xué)習(xí)中有許多分類(lèi)算法。本文將介紹分類(lèi)中使用的各種機(jī)器學(xué)習(xí)算法的優(yōu)缺點(diǎn),還將列出他們的應(yīng)用范圍。
2020-03-02 09:50:123298 對(duì)于初學(xué)者來(lái)說(shuō),這很容易讓人混淆,因?yàn)椤?b class="flag-6" style="color: red">機(jī)器學(xué)習(xí)算法”經(jīng)常與“機(jī)器學(xué)習(xí)模型”交替使用。這兩個(gè)到底是一樣的東西呢,還是不一樣的東西?作為開(kāi)發(fā)人員,你對(duì)排序算法、搜索算法等“算法”的直覺(jué),將有助于你厘清這個(gè)困惑。在本文中,我將闡述機(jī)器學(xué)習(xí)“算法”和“模型”之間的區(qū)別。
2020-07-31 15:38:083347 什么是機(jī)器學(xué)習(xí)?機(jī)器學(xué)習(xí)是英文名稱(chēng)MachineLearning(簡(jiǎn)稱(chēng)ML)的直譯。機(jī)器學(xué)習(xí)涉及概率論、統(tǒng)計(jì)學(xué)、逼近論、凸分析、算法復(fù)雜度理論等多門(mén)學(xué)科。
2020-11-12 10:19:121203 本文介紹了10大常用機(jī)器學(xué)習(xí)算法,包括線性回歸、Logistic回歸、線性判別分析、樸素貝葉斯、KNN、隨機(jī)森林等。
2020-11-20 11:10:042462 什么是機(jī)器學(xué)習(xí)?機(jī)器學(xué)習(xí)是英文名稱(chēng)MachineLearning(簡(jiǎn)稱(chēng)ML)的直譯。機(jī)器學(xué)習(xí)涉及概率論、統(tǒng)計(jì)學(xué)、逼近論、凸分析、算法復(fù)雜度理論等多門(mén)學(xué)科。
2021-01-21 09:29:063315 本文將介紹決策樹(shù)的基本概念、決策樹(shù)學(xué)習(xí)的3個(gè)步驟、3種典型的決策樹(shù)算法、決策樹(shù)的10個(gè)優(yōu)缺點(diǎn)。
2021-01-27 10:03:202145 Logistic回歸數(shù)學(xué)推導(dǎo)以及python實(shí)現(xiàn)
2021-02-25 14:48:007 最實(shí)用的機(jī)器學(xué)習(xí)算法Top5 demi 在 周一, 04/01/2019 - 10:35 提交 本文將推薦五種機(jī)器學(xué)習(xí)算法,你應(yīng)該考慮是否將它們投入應(yīng)用。這五種算法覆蓋最常用于聚類(lèi)、分類(lèi)、數(shù)值預(yù)測(cè)
2021-03-24 16:14:315987 近年來(lái),機(jī)器學(xué)習(xí)模型算法在越來(lái)越多的工業(yè)實(shí)踐中落地。在滴滴,大量線上策略由常規(guī)算法遷移到機(jī)器學(xué)習(xí)模型算法。如何搭建機(jī)器學(xué)習(xí)模型算法的質(zhì)量保障體系成為質(zhì)量團(tuán)隊(duì)急需解決的問(wèn)題之一。本文整體介紹了機(jī)器學(xué)習(xí)模型算法的質(zhì)量保障方案,并進(jìn)一步給出了滴滴質(zhì)量團(tuán)隊(duì)在機(jī)器學(xué)習(xí)模型效果評(píng)測(cè)方面的部分探索實(shí)踐。
2021-05-05 17:08:002010 基于機(jī)器學(xué)習(xí)的哈希檢索算法綜述
2021-06-10 11:05:565 C4.5算法是機(jī)器學(xué)習(xí)算法中的一種分類(lèi)決策樹(shù)算法,其核心算法是ID3算法.C4.5算法繼承了ID3算法的優(yōu)點(diǎn),并在以下幾方面對(duì)ID3算法進(jìn)行了改進(jìn)。
2021-06-23 09:45:2526 的性能。 機(jī)器學(xué)習(xí)必學(xué)10大算法 1.線性回歸 2.Logistic 回歸 3.線性判別分析 4.分類(lèi)和回歸樹(shù) 5.樸素貝葉斯 6.K最近鄰算法 7.學(xué)習(xí)向量量化 8.支持向量化 9.袋裝發(fā)和隨機(jī)森林 10.Boosting 和 AdaBoost 機(jī)器學(xué)習(xí)中必知必會(huì)的 8 種降維技術(shù) 1.相關(guān)性濾
2022-01-30 17:14:00956 但是無(wú)可否認(rèn)的是深度學(xué)習(xí)實(shí)在太好用啦!極大地簡(jiǎn)化了傳統(tǒng)機(jī)器學(xué)習(xí)的整體算法分析和學(xué)習(xí)流程,更重要的是在一些通用的領(lǐng)域任務(wù)刷新了傳統(tǒng)機(jī)器學(xué)習(xí)算法達(dá)不到的精度和準(zhǔn)確率。
2022-04-26 15:07:204084 根據(jù)數(shù)據(jù)類(lèi)型的不同,對(duì)一個(gè)問(wèn)題的建模有不同的方式。在機(jī)器學(xué)習(xí)或者人工智能領(lǐng)域,人們首先會(huì)考慮算法的學(xué)習(xí)方式。在機(jī)器學(xué)習(xí)領(lǐng)域,有幾種主要的學(xué)習(xí)方式。將算法按照學(xué)習(xí)方式分類(lèi)是一個(gè)不錯(cuò)的想法,這樣可以讓人們?cè)诮:?b class="flag-6" style="color: red">算法選擇的時(shí)候考慮能根據(jù)輸入數(shù)據(jù)來(lái)選擇最合適的算法來(lái)獲得最好的結(jié)果。
2022-08-11 11:20:171399 源自:AI知識(shí)干貨 根據(jù)數(shù)據(jù)類(lèi)型的不同,對(duì)一個(gè)問(wèn)題的建模有不同的方式。在機(jī)器學(xué)習(xí)或者人工智能領(lǐng)域,人們首先會(huì)考慮算法的學(xué)習(xí)方式。在機(jī)器學(xué)習(xí)領(lǐng)域,有幾種主要的學(xué)習(xí)方式。將算法按照學(xué)習(xí)方式分類(lèi)是一個(gè)不錯(cuò)
2022-08-22 09:57:331445 現(xiàn)在,機(jī)器學(xué)習(xí)有很多算法。如此多的算法,可能對(duì)于初學(xué)者來(lái)說(shuō),是相當(dāng)不堪重負(fù)的。今天,我們將簡(jiǎn)要介紹 10 種最流行的機(jī)器學(xué)習(xí)算法,這樣你就可以適應(yīng)這個(gè)激動(dòng)人心的機(jī)器學(xué)習(xí)世界了!
2022-10-24 10:08:421518 KNN屬于一種監(jiān)督學(xué)習(xí)的分類(lèi)算法,用于訓(xùn)練的數(shù)據(jù)集是完全正確且已分好類(lèi)的。
2022-11-11 10:11:463352 基于Logistic回歸的山鸴尾預(yù)測(cè)
2022-12-13 14:53:070 在學(xué)習(xí)機(jī)器學(xué)習(xí)算法的過(guò)程中,我們經(jīng)常需要數(shù)據(jù)來(lái)驗(yàn)證算法,調(diào)試參數(shù)。
2023-03-15 09:07:48360 ? 一、機(jī)器學(xué)習(xí)基礎(chǔ)概念 ? 關(guān)于數(shù)據(jù) ? 機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。 ? Iris 鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)和機(jī)器學(xué)習(xí)領(lǐng)域都經(jīng)常被用作示例。數(shù)據(jù)
2023-05-28 11:29:41652 基于機(jī)器學(xué)習(xí)算法的校準(zhǔn)優(yōu)化方案
2023-06-29 12:35:49236 智智能數(shù)字辨識(shí)水表-基于機(jī)器學(xué)習(xí)算法
2023-08-10 11:26:40371 機(jī)器學(xué)習(xí)算法的5種基本算子 機(jī)器學(xué)習(xí)是一種重要的人工智能技術(shù),它是為了讓計(jì)算機(jī)能夠通過(guò)數(shù)據(jù)自主的學(xué)習(xí)和提升能力而發(fā)明的。機(jī)器學(xué)習(xí)算法是機(jī)器學(xué)習(xí)的核心,它是指讓計(jì)算機(jī)從數(shù)據(jù)中進(jìn)行自主學(xué)習(xí)并且可以實(shí)現(xiàn)
2023-08-17 16:11:461245 機(jī)器學(xué)習(xí)算法匯總 機(jī)器學(xué)習(xí)算法分類(lèi) 機(jī)器學(xué)習(xí)算法模型 機(jī)器學(xué)習(xí)是人工智能的分支之一,它通過(guò)分析和識(shí)別數(shù)據(jù)模式,學(xué)習(xí)從中提取規(guī)律,并用于未來(lái)的決策和預(yù)測(cè)。在機(jī)器學(xué)習(xí)中,算法是最基本的組成部分之一。算法
2023-08-17 16:11:48632 機(jī)器學(xué)習(xí)算法總結(jié) 機(jī)器學(xué)習(xí)算法是什么?機(jī)器學(xué)習(xí)算法優(yōu)缺點(diǎn)? 機(jī)器學(xué)習(xí)算法總結(jié) 機(jī)器學(xué)習(xí)算法是一種能夠從數(shù)據(jù)中自動(dòng)學(xué)習(xí)的算法。它能夠從訓(xùn)練數(shù)據(jù)中學(xué)習(xí)特征,進(jìn)而對(duì)未知數(shù)據(jù)進(jìn)行分類(lèi)、回歸、聚類(lèi)等任務(wù)。通過(guò)
2023-08-17 16:11:50939 ,討論一些主要的機(jī)器學(xué)習(xí)算法,以及比較它們之間的優(yōu)缺點(diǎn),以便于您選擇適合的算法。 一、機(jī)器學(xué)習(xí)算法的基本概念 機(jī)器學(xué)習(xí)是一種人工智能的技術(shù),它允許計(jì)算機(jī)從歷史數(shù)據(jù)中學(xué)習(xí)模式,以便于更好地預(yù)測(cè)未來(lái)的數(shù)據(jù)。機(jī)器學(xué)習(xí)算法
2023-08-17 16:27:15569 機(jī)器學(xué)習(xí)vsm算法 隨著機(jī)器學(xué)習(xí)技術(shù)的不斷發(fā)展,相似性計(jì)算是機(jī)器學(xué)習(xí)中的重要組成部分。在信息檢索、文本挖掘、機(jī)器翻譯等領(lǐng)域中,相似性計(jì)算是必不可少的一項(xiàng)技術(shù)。在這些領(lǐng)域中,我們通常使用向量空間模型
2023-08-17 16:29:35529 機(jī)器學(xué)習(xí)有哪些算法?機(jī)器學(xué)習(xí)分類(lèi)算法有哪些?機(jī)器學(xué)習(xí)預(yù)判有哪些算法? 機(jī)器學(xué)習(xí)是一種人工智能技術(shù),通過(guò)對(duì)數(shù)據(jù)的分析和學(xué)習(xí),為計(jì)算機(jī)提供智能決策。機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)機(jī)器學(xué)習(xí)的基礎(chǔ)。常見(jiàn)的機(jī)器學(xué)習(xí)算法
2023-08-17 16:30:111245 卷積神經(jīng)網(wǎng)絡(luò)算法的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)是一種廣泛應(yīng)用于圖像、語(yǔ)音等領(lǐng)域的深度學(xué)習(xí)算法。在過(guò)去幾年里,CNN的研究和應(yīng)用有了飛速的發(fā)展,取得了許多重要的成果,如在圖像分類(lèi)、目標(biāo)識(shí)別、人臉識(shí)別、自然語(yǔ)言
2023-08-21 16:50:045473 深度學(xué)習(xí)和機(jī)器學(xué)習(xí)是機(jī)器學(xué)習(xí)領(lǐng)域中兩個(gè)重要的概念,都是人工智能領(lǐng)域非常熱門(mén)的技術(shù)。兩者的關(guān)系十分密切,然而又存在一定的區(qū)別。下面從定義、優(yōu)缺點(diǎn)和區(qū)別方面一一闡述。
2023-08-21 18:27:151649 隨著計(jì)算能力和大數(shù)據(jù)的崛起,機(jī)器學(xué)習(xí)算法正迎來(lái)快速發(fā)展的時(shí)期。在研究層面上,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是當(dāng)前最主要的熱點(diǎn)。在計(jì)算能力的推動(dòng)下,機(jī)器學(xué)習(xí)算法取得了許多重大突破,如AlphaGo戰(zhàn)勝人類(lèi)棋手
2023-08-22 17:49:271659 二項(xiàng)logistic回歸模型是一種分類(lèi)模型,由條件概率分布P(Y|X)表示,形式為參數(shù)化的logistic分布。這里隨機(jī)變量X取值為實(shí)數(shù),隨機(jī)變量Y取值為1或0??梢酝ㄟ^(guò)有監(jiān)督的方法來(lái)估計(jì)模型參數(shù)。
2023-10-16 10:10:18148 或許我們所有人都會(huì)學(xué)習(xí)的第一個(gè)機(jī)器學(xué)習(xí)算法就是線性回歸算法,它無(wú)疑是最基本且被廣泛使用的技術(shù)之一——尤其是在預(yù)測(cè)分析方面。
2024-03-18 14:06:1096
評(píng)論
查看更多