電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>深度學習:卷積神經(jīng)網(wǎng)絡(luò)在每一層提取到的特征以及訓(xùn)練的過程

深度學習:卷積神經(jīng)網(wǎng)絡(luò)在每一層提取到的特征以及訓(xùn)練的過程

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

基于卷積神經(jīng)網(wǎng)絡(luò)的雙重特征提取方法

機器學習技術(shù)已被廣泛接受,并且很適合此類分類問題。基于卷積神經(jīng)網(wǎng)絡(luò)的雙重特征提取方法。提出的模型使用Radon拉冬變換進行第一次特征提取,然后將此特征輸入卷積層進行第二次特征提取。
2023-10-16 11:30:38382

詳解深度學習、神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

處理技術(shù)也可以通過深度學習來獲得更優(yōu)異的效果,比如去噪、超分辨率和跟蹤算法等。為了跟上時代的步伐,必須對深度學習神經(jīng)網(wǎng)絡(luò)技術(shù)有所學習和研究。本文將介紹深度學習技術(shù)、神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)以及它們在相關(guān)領(lǐng)域中的應(yīng)用。
2024-01-11 10:51:32596

種基于高效采樣算法的時序圖神經(jīng)網(wǎng)絡(luò)系統(tǒng)介紹

算法神經(jīng)網(wǎng)絡(luò)中將會帶來額外的采樣開銷。 現(xiàn)有的圖神經(jīng)網(wǎng)絡(luò)采樣算法模型有三種:節(jié)點采樣、分層采樣和子圖采樣 。正如圖1所示,節(jié)點采樣中每個點在一層都不會共享鄰居。因此隨著層數(shù)的增加,每層點數(shù)都會
2022-09-28 10:34:13

卷積神經(jīng)網(wǎng)絡(luò)卷積的處理過程

inference設(shè)備端上做。嵌入式設(shè)備的特點是算力不強、memory小??梢酝ㄟ^對神經(jīng)網(wǎng)絡(luò)做量化來降load和省memory,但有時可能memory還吃緊,就需要對神經(jīng)網(wǎng)絡(luò)memory使用上做進步優(yōu)化
2021-12-23 06:16:40

卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

深度學習卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實例探究及學習總結(jié)

深度學習工程師-吳恩達》03卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實例探究 學習總結(jié)
2020-05-22 17:15:57

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)入門資料

卷積神經(jīng)網(wǎng)絡(luò)入門詳解
2019-02-12 13:58:26

卷積神經(jīng)網(wǎng)絡(luò)原理及發(fā)展過程

Top100論文導(dǎo)讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅰ)
2019-09-06 17:25:54

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

十余年來快速發(fā)展的嶄新領(lǐng)域,越來越受到研究者的關(guān)注。卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型是深度學習模型中最重要的種經(jīng)典結(jié)構(gòu),其性能在近年來深度學習任務(wù)上逐步提高。由于可以自動學習樣本數(shù)據(jù)的特征表示,卷積
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點是什么

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點
2020-05-05 18:12:50

卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機器學習?

復(fù)雜數(shù)據(jù)中提取特征的強大工具。例如,這包括音頻信號或圖像中的復(fù)雜模式識別。本文討論了 CNN 相對于經(jīng)典線性規(guī)劃的優(yōu)勢。后續(xù)文章“訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò):什么是機器學習?——第2部分”將討論如何訓(xùn)練CNN
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

深度學習與數(shù)據(jù)挖掘的關(guān)系

;而深度學習使用獨立的、連接,還有數(shù)據(jù)傳播方向,比如最近大火的卷積神經(jīng)網(wǎng)絡(luò)是第個真正多層結(jié)構(gòu)學習算法,它利用空間相對關(guān)系減少參數(shù)數(shù)目以提高訓(xùn)練性能,讓機器認知過程進行,逐步抽象,從而大幅度提升
2018-07-04 16:07:53

深度學習中的機器視覺(網(wǎng)絡(luò)壓縮、視覺問答、可視化等)

些可視化的手段以理解深度卷積神經(jīng)網(wǎng)絡(luò)。直接可視化第一層濾波器由于第一層卷積的濾波器直接在輸入圖像中滑動,我們可以直接對第一層濾波器進行可視化??梢钥闯觯?b class="flag-6" style="color: red">一層權(quán)重關(guān)注于特定朝向的邊緣以及特定色彩組合
2019-07-21 13:00:00

深度學習介紹

網(wǎng)絡(luò)最終來實現(xiàn)更通用的識別。這些多層的優(yōu)點是各種抽象層次的學習特征。例如,若訓(xùn)練深度卷積神經(jīng)網(wǎng)絡(luò)(CNN)來對圖像進行分類,則第一層學習識別邊緣等最基本的東西…
2022-11-11 07:55:50

神經(jīng)網(wǎng)絡(luò)解決方案讓自動駕駛成為現(xiàn)實

及 3x3 的 24 卷積神經(jīng)網(wǎng)絡(luò), 其性能表現(xiàn)幾乎是典型的 GPU/CPU 綜合處理引擎上運行的類似 CNN 的三倍,盡管其所需的內(nèi)存帶寬只是后者的五分之且功耗大幅降低。下深度學習神經(jīng)網(wǎng)絡(luò)
2017-12-21 17:11:34

AI工程師 10 個深度學習方法

能夠自動提取特征上文提到的“更多的神經(jīng)元”是指近年來神經(jīng)元的數(shù)量不斷增加,就可以用更復(fù)雜的模型來表示。也從多層網(wǎng)絡(luò)一層完全連接,發(fā)展到卷積神經(jīng)網(wǎng)絡(luò)神經(jīng)元片段的局部連接,以及與遞歸神經(jīng)網(wǎng)絡(luò)
2019-03-07 20:17:28

AI知識科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò),前面的訓(xùn)練出的特征作為下一層的輸入,所以越到后面的,特征越具體。卷積神經(jīng)網(wǎng)絡(luò)大型圖像處理方面展示出了非凡的效果。例如,我們需要在眾多圖像中鑒別出只貓,人類可以通過已有的常識判斷出特征
2018-06-05 10:11:50

MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)

網(wǎng)絡(luò)newrbe 設(shè)計嚴格的徑向基網(wǎng)絡(luò)newgrnn 設(shè)計廣義回歸神經(jīng)網(wǎng)絡(luò)newpnn 設(shè)計概率神經(jīng)網(wǎng)絡(luò)newc 創(chuàng)建競爭newsom 創(chuàng)建自組織特征映射newhop 創(chuàng)建Hopfield
2009-09-22 16:10:08

《 AI加速器架構(gòu)設(shè)計與實現(xiàn)》+第卷積神經(jīng)網(wǎng)絡(luò)觀后感

連接塊是種模塊,通常用于深度卷積神經(jīng)網(wǎng)絡(luò)中,特別是殘差網(wǎng)絡(luò)(Residual Network,ResNet)中廣泛使用,也是我比較熟悉的。組卷積塊是卷積神經(jīng)網(wǎng)絡(luò)中的模塊,其主要目的是將卷積操作
2023-09-11 20:34:01

【AI學習】第3篇--人工神經(jīng)網(wǎng)絡(luò)

`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機器學習的步驟:訓(xùn)練與預(yù)測、訓(xùn)練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達訓(xùn)練流程以及AI普及化教育之路。`
2020-11-05 17:48:39

【PYNQ-Z2申請】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

探索整個過程中資源利用的優(yōu)化使整個過程更加節(jié)能高效預(yù)計成果:1、PYNQ上實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)2、對以往實現(xiàn)結(jié)構(gòu)進行優(yōu)化3、為卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)路硬件上,特別是FPGA實現(xiàn)提供種優(yōu)化思路和方案
2018-12-19 11:37:22

【我是電子發(fā)燒友】如何加速DNN運算?

元,通常也叫做網(wǎng)絡(luò)的“隱藏”。通過個或更多隱藏的加權(quán)和最終被傳播到“輸出”,將神經(jīng)網(wǎng)絡(luò)的最終結(jié)果輸出給用戶。圖2:神經(jīng)網(wǎng)絡(luò)示意圖 神經(jīng)網(wǎng)絡(luò)領(lǐng)域,個子領(lǐng)域被稱為深度學習。最初的神經(jīng)網(wǎng)絡(luò)通常只有
2017-06-14 21:01:14

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

種常用的無監(jiān)督學習策略,使用改策略時,網(wǎng)絡(luò)的輸出神經(jīng)元相互競爭,時刻只有個競爭獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較、識別、識別閾值、重置模塊構(gòu)成。其中比較負責接收輸入樣本,并將其傳遞
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含個隱的BP神經(jīng)網(wǎng)絡(luò)模型(兩神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00

人臉識別、語音翻譯、無人駕駛...這些高科技都離不開深度神經(jīng)網(wǎng)絡(luò)了!

了。下面介紹幾種深度學習的方法,它們使識別錯誤率極大地降低。 卷積神經(jīng)網(wǎng)絡(luò):AlexNet 2012 年,深度學習次被運用到 ImageNet 比賽中。其效果非常顯著, 錯誤率從前年的 26
2018-05-11 11:43:14

什么是圖卷積神經(jīng)網(wǎng)絡(luò)?

卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡(luò)

分辨率、轉(zhuǎn)換、遷移、描述等等都已經(jīng)可以使用深度學習技術(shù)實現(xiàn)。其背后的技術(shù)可以言以蔽之:深度卷積神經(jīng)網(wǎng)絡(luò)具有超強的圖像特征提取能力。其中,風格遷移算法的成功,其主要基于兩點:1.兩張圖像經(jīng)過預(yù)訓(xùn)練
2018-05-08 15:57:47

優(yōu)化神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法有哪些?

優(yōu)化神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法有哪些?
2022-09-06 09:52:36

全連接神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

可分離卷積神經(jīng)網(wǎng)絡(luò) Cortex-M 處理器上實現(xiàn)關(guān)鍵詞識別

我們可以對神經(jīng)網(wǎng)絡(luò)架構(gòu)進行優(yōu)化,使之適配微控制器的內(nèi)存和計算限制范圍,并且不會影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò) Cortex-M 處理器上實現(xiàn)關(guān)鍵詞識別的潛力。關(guān)鍵詞識別
2021-07-26 09:46:37

基于BP神經(jīng)網(wǎng)絡(luò)的手勢識別系統(tǒng)

, 神經(jīng)網(wǎng)絡(luò)學習速度就越慢。根據(jù)Kosmogorov 定理,合理的結(jié)構(gòu)和恰當?shù)臋?quán)值條件下,3 BP 網(wǎng)絡(luò)可以逼近任意的連續(xù)函數(shù)。因此,我們選取結(jié)構(gòu)相對簡單的3 BP 網(wǎng)絡(luò)?! ?b class="flag-6" style="color: red">一般情況下,神經(jīng)
2018-11-13 16:04:45

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實現(xiàn)設(shè)計

FPGA 上實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是深度神經(jīng)網(wǎng)絡(luò),處理大規(guī)模圖像識別任務(wù)以及與機器學習類似的其他問題方面已大獲成功。在當前案例中,針對 FPGA 上實現(xiàn) CNN 做個可行性研究
2019-06-19 07:24:41

如何用卷積神經(jīng)網(wǎng)絡(luò)方法去解決機器監(jiān)督學習下面的分類問題?

人工智能下面有哪些機器學習分支?如何用卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法去解決機器學習監(jiān)督學習下面的分類問題?
2021-06-16 08:09:03

如何進行高效的時序圖神經(jīng)網(wǎng)絡(luò)訓(xùn)練

訓(xùn)練過程與數(shù)據(jù)傳輸過程進行流水線化處理。具體來說,我們將GPU的顯存劃分為三部分:第部分存儲固定的數(shù)據(jù)(神經(jīng)網(wǎng)絡(luò)參數(shù)以及源點的特征向量),第二部分存儲當前神經(jīng)網(wǎng)絡(luò)訓(xùn)練所需的數(shù)據(jù)( 包括邊數(shù)據(jù)和匯點
2022-09-28 10:37:20

探討深度學習嵌入式設(shè)備上的應(yīng)用

下面來探討深度學習嵌入式設(shè)備上的應(yīng)用,具體如下:1、深度學習的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個隱的多層感知器(MLP) 是種原始的深度學習結(jié)構(gòu)。深度學習通過組合低層特征形成更加抽象
2021-10-27 08:02:31

智能手機跑大規(guī)模神經(jīng)網(wǎng)絡(luò)的主要策略

。?oè???oè?????o?¤§?????¨é??¤???o??? 介紹深度學習個令人難以置信的靈活且強大的技術(shù),但運行的神經(jīng)網(wǎng)絡(luò)可以計算方面需要非常大的電力,且對磁盤空間也有要求。這通常不是云空間能夠
2018-05-07 16:02:21

解析深度學習卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實踐

解析深度學習卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實踐
2020-06-14 22:21:12

請問為什么要用卷積神經(jīng)網(wǎng)絡(luò)

為什么要用卷積神經(jīng)網(wǎng)絡(luò)?
2020-06-13 13:11:39

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

,非局部運算將某處位置的響應(yīng)作為輸入特征映射中所有位置的特征的加權(quán)和來進行計算。我們將非局部運算作為個高效、簡單和通用的模塊,用于獲取深度神經(jīng)網(wǎng)絡(luò)的長時記憶。我們提出的非局部運算是計算機視覺中經(jīng)
2018-11-12 14:52:50

卷積神經(jīng)網(wǎng)絡(luò)檢測臉部關(guān)鍵點的教程之卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練與數(shù)據(jù)擴充

上一次我們用了單隱層的神經(jīng)網(wǎng)絡(luò),效果還可以改善,這一次就使用CNN。 卷積神經(jīng)網(wǎng)絡(luò) 上圖演示了卷積操作 LeNet-5式的卷積神經(jīng)網(wǎng)絡(luò),是計算機視覺領(lǐng)域近期取得的巨大突破的核心。卷積層和之前的全連接
2017-11-16 11:45:072012

基于三通道全連接層的卷積神經(jīng)網(wǎng)絡(luò)特征提取

;其次,設(shè)計了一個基于三通道全連接層的卷積神經(jīng)網(wǎng)絡(luò)進行特征提取,并對特征建立索引,有效地提高了網(wǎng)絡(luò)對不同尺度下空間信息的提取能力,實現(xiàn)了對紋身圖像的高效檢測;最后,通過兩個數(shù)據(jù)集驗證了算法的泛化能力。實驗結(jié)果表
2017-11-28 17:07:470

卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和運行原理

傳統(tǒng)的梯度下降方法進行訓(xùn)練,經(jīng)過訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)能夠學習到圖像中的特征,并且完成對圖像特征提取和分類。作為神經(jīng)網(wǎng)絡(luò)領(lǐng)域的一個重要研究分支,卷積神經(jīng)網(wǎng)絡(luò)的特點在于其每一層特征都由上一層的局部區(qū)域通過共享權(quán)值的卷積核激勵得到。這一特點使得卷積
2017-12-12 11:45:310

利用多流特征提升低資源卷積神經(jīng)網(wǎng)絡(luò)聲學模型

針對卷積神經(jīng)網(wǎng)絡(luò)(CNN)聲學建模參數(shù)在低資源訓(xùn)練數(shù)據(jù)條件下的語音識別任務(wù)中存在訓(xùn)練不充分的問題,提出一種利用多流特征提升低資源卷積神經(jīng)網(wǎng)絡(luò)聲學模型性能的方法。首先,為了在低資源聲學建模過程
2017-12-13 15:53:570

卷積神經(jīng)網(wǎng)絡(luò)特征重要性分析及增強特征選擇模型

卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)憑借著其強大的表達能力、突出的分類性能,已在不同領(lǐng)域內(nèi)得到了廣泛應(yīng)用.當面對高維特征時,深度神經(jīng)網(wǎng)絡(luò)通常被認為具有較好的魯棒性,能夠隱含地對特征進行選擇,但由于網(wǎng)絡(luò)參數(shù)巨大
2017-12-25 15:21:350

3D卷積神經(jīng)網(wǎng)絡(luò)的手勢識別

傳統(tǒng)2D卷積神經(jīng)網(wǎng)絡(luò)對于視頻連續(xù)幀圖像的特征提取容易丟失目標時間軸上的運動信息,導(dǎo)致識別準確度較低。為此,提出一種基于多列深度3D卷積神經(jīng)網(wǎng)絡(luò)(3D CNN)的手勢識別方法。采用3D卷積核對
2018-01-30 13:59:192

一種用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò)

卷積神經(jīng)網(wǎng)絡(luò)的特點是逐層提取特征,第一層提取特征較為低級,第二層在第一層的基礎(chǔ)上繼續(xù)提取更高級別的特征,同樣,第三層在第二層的基礎(chǔ)上提取特征也更為復(fù)雜。越高級的特征越能體現(xiàn)出圖像的類別屬性,卷積神經(jīng)網(wǎng)絡(luò)正是通過逐層卷積的方式提取圖像的優(yōu)良特征。
2018-07-04 08:59:409540

詳解卷積神經(jīng)網(wǎng)絡(luò)卷積過程

卷積過程卷積神經(jīng)網(wǎng)絡(luò)最主要的特征。然而卷積過程有比較多的細節(jié),初學者常會有比較多的問題,這篇文章對卷積過程進行比較詳細的解釋。
2019-05-02 15:39:0015154

卷積神經(jīng)網(wǎng)絡(luò)的權(quán)值反向傳播機制和MATLAB的實現(xiàn)方法

深度學習是多層神經(jīng)網(wǎng)絡(luò)運用各種學習算法解決圖像、文本等相關(guān)問題的算法合集。卷積神經(jīng)網(wǎng)絡(luò)作為深度學習的重要算法,尤其擅長圖像處理領(lǐng)域。卷積神經(jīng)網(wǎng)絡(luò)通過卷積核來提取圖像的各種特征,通過權(quán)值共享和池化極大
2018-12-06 15:29:4814

使用多孔卷積神經(jīng)網(wǎng)絡(luò)解決機器學習的圖像深度不準確的方法說明

針對在傳統(tǒng)機器學習方法下單幅圖像深度估計效果差、深度值獲取不準確的問題,提出了一種基于多孔卷積神經(jīng)網(wǎng)絡(luò)(ACNN)的深度估計模型。首先,利用卷積神經(jīng)網(wǎng)絡(luò)(CNN)逐層提取原始圖像的特征圖;其次,利用
2019-10-30 14:58:3610

卷積神經(jīng)網(wǎng)絡(luò)的主要兩個特征

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種目前計算機視覺領(lǐng)域廣泛使用的深度學習網(wǎng)絡(luò),與傳統(tǒng)的人工神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)不同,它包含有非常特殊的卷積層和降采樣層(有些文章和書籍里又稱之為池化層、匯合層),其中卷積層和前一層采用局部連接和權(quán)值共享的方式進行連接,從而大大降低了參數(shù)數(shù)量。
2020-05-04 18:24:0013078

基于多孔卷積神經(jīng)網(wǎng)絡(luò)的圖像深度估計模型

針對在傳統(tǒng)機器學習方法下單幅圖像深度估計效果差、深度值獲取不準確的問題,提出了一種基于多孔卷積神經(jīng)網(wǎng)絡(luò)(ACNN)的深度估計模型。首先,利用卷積神經(jīng)網(wǎng)絡(luò)(CNN)逐層提取原始圖像的特征圖;其次,利用
2020-09-29 16:20:005

端到端深度學習卷積神經(jīng)網(wǎng)絡(luò)識別商家招牌

為解決采用卷積神經(jīng)網(wǎng)絡(luò)對商家招牌進行分類時存在特征判別性較差的問題,通過在注意力機制中引入神經(jīng)網(wǎng)絡(luò),提岀一種端到端的深度學習卷積神經(jīng)網(wǎng)絡(luò)方法。使用卷積注意力模塊分別學習通道注意力與空間注意力信息
2021-03-12 10:51:458

基于特征交換的卷積神經(jīng)網(wǎng)絡(luò)圖像分類算法

針對深度學習在圖像識別任務(wù)中過分依賴標注數(shù)據(jù)的問題,提岀一種基于特征交換的卷積神經(jīng)網(wǎng)絡(luò)(CNN)圖像分類算法。結(jié)合CNN的特征提取方式與全卷積神經(jīng)網(wǎng)絡(luò)的像素位置預(yù)測功能,將CNN卷積提取出的特征
2021-03-22 14:59:3427

神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的原理

卷積神經(jīng)網(wǎng)絡(luò) (Convolutional Neural Network, CNN) 是一種源于人工神經(jīng)網(wǎng)絡(luò)(Neural Network, NN)的深度機器學習方法,近年來在圖像識別領(lǐng)域取得了巨大
2021-03-25 09:45:217

綜述深度學習卷積神經(jīng)網(wǎng)絡(luò)模型應(yīng)用及發(fā)展

上逐步提高。由于可以自動學習樣本數(shù)據(jù)的特征表示,卷積神經(jīng)網(wǎng)絡(luò)已經(jīng)廣泛應(yīng)用于圖像分類、目標檢測、語乂分割以及自然語言處理等領(lǐng)域。首先分析了典型卷積神經(jīng)網(wǎng)絡(luò)模型為提髙其性能増加網(wǎng)絡(luò)深度以及寬度的模型結(jié)構(gòu),分析了采用注
2021-04-02 15:29:0420

卷積神經(jīng)網(wǎng)絡(luò)是怎樣實現(xiàn)不變性特征提取的?

圖像特征 傳統(tǒng)的圖像特征提取特征工程)主要是基于各種先驗?zāi)P?,通過提取圖像關(guān)鍵點、生成描述子特征數(shù)據(jù)、進行數(shù)據(jù)匹配或者機器學習方法對特征數(shù)據(jù)二分類/多分類實現(xiàn)圖像的對象檢測與識別。卷積神經(jīng)網(wǎng)絡(luò)通過
2021-04-30 09:11:572363

卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)_卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練過程

(channel)。比如黑白圖片的深度為1,而在RGB色彩模式下,圖像的深度為3。從輸入層開始,卷積神經(jīng)網(wǎng)絡(luò)通過不同的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)下將上一層的三維矩陣轉(zhuǎn)化為下一層的三維矩陣轉(zhuǎn)化為下一層的三維矩陣,直到最后的全連接層。
2021-05-11 17:02:5415213

深度學習中的卷積神經(jīng)網(wǎng)絡(luò)層級分解綜述

隨著深度學習的不斷發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNN)在目標檢測與圖像分類中受到研究者的廣泛關(guān)注。CNN從 Lenet5網(wǎng)絡(luò)發(fā)展到深度殘差網(wǎng)絡(luò),其層數(shù)不斷增加?;?b class="flag-6" style="color: red">神經(jīng)網(wǎng)絡(luò)中“深度”的含義,在確保感受野相同
2021-05-19 16:11:005

為什么卷積神經(jīng)網(wǎng)絡(luò)可以做到不變性特征提取?

圖像特征 傳統(tǒng)的圖像特征提取特征工程)主要是基于各種先驗?zāi)P停ㄟ^提取圖像關(guān)鍵點、生成描述子特征數(shù)據(jù)、進行數(shù)據(jù)匹配或者機器學習方法對特征數(shù)據(jù)二分類/多分類實現(xiàn)圖像的對象檢測與識別。卷積神經(jīng)網(wǎng)絡(luò)通過
2021-05-20 10:49:084374

卷積神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識科普

卷積神經(jīng)網(wǎng)絡(luò)是一種深度學習網(wǎng)絡(luò),主要用于識別圖像和對其進行分類,以及識別圖像中的對象。
2022-05-13 10:26:471993

深度學習與圖神經(jīng)網(wǎng)絡(luò)學習分享:Transformer

在過去的幾年中,神經(jīng)網(wǎng)絡(luò)的興起與應(yīng)用成功推動了模式識別和數(shù)據(jù)挖掘的研究。許多曾經(jīng)嚴重依賴于手工提取特征的機器學習任務(wù)(如目標檢測、機器翻譯和語音識別),如今都已被各種端到端的深度學習范式(例如卷積
2022-09-22 10:16:34969

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識。就目前而言,神經(jīng)網(wǎng)絡(luò)深度學習算法的核心,我們所熟知的很多深度學習算法的背后其實都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:442256

卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機器學習

隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應(yīng)用。本文基于此解釋了卷積神經(jīng)網(wǎng)絡(luò)(CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提取特征
2023-03-11 23:10:04523

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學習的人工神經(jīng)網(wǎng)絡(luò),是深度學習技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30806

卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)

Learning)的應(yīng)用,通過運用多層卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),可以自動地進行特征提取學習,進而實現(xiàn)圖像分類、物體識別、目標檢測、語音識別和自然語言翻譯等任務(wù)。 卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)包括:輸入層、卷積層、激活函數(shù)、池化層和全連接層。 在CNN中,輸入層通常是代表圖像的矩陣或向量,而卷積層是卷積
2023-08-17 16:30:35804

python卷積神經(jīng)網(wǎng)絡(luò)cnn的訓(xùn)練算法

python卷積神經(jīng)網(wǎng)絡(luò)cnn的訓(xùn)練算法? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)一直是深度學習領(lǐng)域重要的應(yīng)用之一,被廣泛應(yīng)用于圖像、視頻、語音等領(lǐng)域
2023-08-21 16:41:37859

卷積神經(jīng)網(wǎng)絡(luò)詳解 卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層及各層功能

卷積神經(jīng)網(wǎng)絡(luò)詳解 卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層及各層功能 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNNs)是一個用于圖像和語音識別的深度學習技術(shù)。它是一種專門為處理
2023-08-21 16:41:404401

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么

的前饋神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò)廣泛用于圖像識別、自然語言處理、視頻處理等方面。本文將對卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用進行詳盡、詳實、細致的介紹,以及卷積神經(jīng)網(wǎng)絡(luò)通常用于處理哪些任務(wù)。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)通過學習特定的特征,可以用來識別對象、分類物品等
2023-08-21 16:41:453487

卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點 cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點

卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點 cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network,CNN)是一種基于深度學習技術(shù)的神經(jīng)網(wǎng)絡(luò),由于其出色的性能
2023-08-21 16:41:481662

卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容?

卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學習領(lǐng)域中最廣泛應(yīng)用的模型之一,主要應(yīng)用于圖像、語音
2023-08-21 16:41:521305

卷積神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練步驟

卷積神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練步驟? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種常用的深度學習算法,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等諸多領(lǐng)域。CNN
2023-08-21 16:42:00885

卷積神經(jīng)網(wǎng)絡(luò)如何識別圖像

為多層卷積層、池化層和全連接層。CNN模型通過訓(xùn)練識別并學習高度復(fù)雜的圖像模式,對于識別物體和進行圖像分類等任務(wù)有著非常優(yōu)越的表現(xiàn)。本文將會詳細介紹卷積神經(jīng)網(wǎng)絡(luò)如何識別圖像,主要包括以下幾個方面: 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和原理 2. 卷積神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練過程 3.
2023-08-21 16:49:271284

卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用領(lǐng)域

卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用領(lǐng)域 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種廣泛應(yīng)用于圖像、視頻和自然語言處理領(lǐng)域的深度學習算法。它最初是用于圖像識別領(lǐng)域,但目前已經(jīng)擴展到了許多其他應(yīng)用領(lǐng)域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡(luò)
2023-08-21 16:49:292029

卷積神經(jīng)網(wǎng)絡(luò)三大特點

是一種基于圖像處理的神經(jīng)網(wǎng)絡(luò),它模仿人類視覺結(jié)構(gòu)中的神經(jīng)元組成,對圖像進行處理和學習。在圖像處理中,通常將圖像看作是二維矩陣,即每個像素點都有其對應(yīng)的坐標和像素值。卷積神經(jīng)網(wǎng)絡(luò)采用卷積操作實現(xiàn)圖像的特征提取,具有“局部感知”的特點。 從直覺上理解,卷積
2023-08-21 16:49:323048

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展 卷積神經(jīng)網(wǎng)絡(luò)三大特點

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷程 卷積神經(jīng)網(wǎng)絡(luò)三大特點? 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學習領(lǐng)域
2023-08-21 16:49:391144

卷積神經(jīng)網(wǎng)絡(luò)基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)主要包括什么

卷積神經(jīng)網(wǎng)絡(luò)基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)主要包括什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛用于圖像識別、自然語言處理、語音識別等領(lǐng)域
2023-08-21 16:57:193562

卷積神經(jīng)網(wǎng)絡(luò)層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)卷積層講解

卷積神經(jīng)網(wǎng)絡(luò)層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)卷積層講解 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學習神經(jīng)網(wǎng)絡(luò)模型,在許多視覺相關(guān)的任務(wù)中表現(xiàn)出色,如圖
2023-08-21 16:49:423760

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

深度學習算法。CNN模型最早被提出是為了處理圖像,其模型結(jié)構(gòu)中包含卷積層、池化層和全連接層等關(guān)鍵技術(shù),經(jīng)過多個卷積層和池化層的處理,CNN可以提取出圖像中的特征信息,從而對圖像進行分類。 一、卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)算法最早起源于圖像處理領(lǐng)域。它是一種深
2023-08-21 16:49:461229

卷積神經(jīng)網(wǎng)絡(luò)算法是機器算法嗎

卷積神經(jīng)網(wǎng)絡(luò)算法是機器算法嗎? 卷積神經(jīng)網(wǎng)絡(luò)算法是機器算法的一種,它通常被用于圖像、語音、文本等數(shù)據(jù)的處理和分類。隨著深度學習的興起,卷積神經(jīng)網(wǎng)絡(luò)逐漸成為了圖像、語音等領(lǐng)域中最熱門的算法之一。 卷積
2023-08-21 16:49:48437

卷積神經(jīng)網(wǎng)絡(luò)算法原理

卷積神經(jīng)網(wǎng)絡(luò)算法原理? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學習(Deep Learning)的模型,它能夠自動地從圖片、音頻、文本等數(shù)據(jù)中提取
2023-08-21 16:49:54690

卷積神經(jīng)網(wǎng)絡(luò)是什么?卷積神經(jīng)網(wǎng)絡(luò)的工作原理和應(yīng)用

  卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學習神經(jīng)網(wǎng)絡(luò),主要用于圖像和視頻的識別、分類和預(yù)測,是計算機視覺領(lǐng)域中應(yīng)用最廣泛的深度學習算法之一。該網(wǎng)絡(luò)模型可以自動從原始數(shù)據(jù)中學習有用的特征,并將其映射到相應(yīng)的類別。
2023-08-21 17:03:461064

卷積神經(jīng)網(wǎng)絡(luò)算法有哪些?

卷積神經(jīng)網(wǎng)絡(luò)算法有哪些?? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN) 是一種基于多層感知器(multilayer perceptron, MLP)的深度學習
2023-08-21 16:50:01977

卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點 卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機器學習算法,其主要特點是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實現(xiàn)對大規(guī)模數(shù)據(jù)進行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361868

卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab

的工作原理和實現(xiàn)方法。 一、卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)是一種分層結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)模型,其中每一層都對數(shù)據(jù)進行特征提取,并通過
2023-08-21 16:50:11745

卷積神經(jīng)網(wǎng)絡(luò)算法流程 卷積神經(jīng)網(wǎng)絡(luò)模型工作流程

卷積神經(jīng)網(wǎng)絡(luò)算法流程 卷積神經(jīng)網(wǎng)絡(luò)模型工作流程? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種廣泛應(yīng)用于目標跟蹤、圖像識別和語音識別等領(lǐng)域的深度學習模型
2023-08-21 16:50:191316

cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型

cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學習神經(jīng)網(wǎng)絡(luò),最初被廣泛應(yīng)用于計算機
2023-08-21 17:11:47680

卷積神經(jīng)網(wǎng)絡(luò)模型搭建

卷積神經(jīng)網(wǎng)絡(luò)模型搭建 卷積神經(jīng)網(wǎng)絡(luò)模型是一種深度學習算法。它已經(jīng)成為了計算機視覺和自然語言處理等各種領(lǐng)域的主流算法,具有很大的應(yīng)用前景。本篇文章將詳細介紹卷積神經(jīng)網(wǎng)絡(luò)模型的搭建過程,為讀者提供一份
2023-08-21 17:11:49543

卷積神經(jīng)網(wǎng)絡(luò)一共有幾層 卷積神經(jīng)網(wǎng)絡(luò)模型三層

卷積神經(jīng)網(wǎng)絡(luò)一共有幾層 卷積神經(jīng)網(wǎng)絡(luò)模型三層? 卷積神經(jīng)網(wǎng)絡(luò) (Convolutional Neural Networks,CNNs) 是一種在深度學習領(lǐng)域中發(fā)揮重要作用的模型。它是一種有層次結(jié)構(gòu)
2023-08-21 17:11:533332

卷積神經(jīng)網(wǎng)絡(luò)主要包括哪些 卷積神經(jīng)網(wǎng)絡(luò)組成部分

卷積神經(jīng)網(wǎng)絡(luò)主要包括哪些 卷積神經(jīng)網(wǎng)絡(luò)組成部分 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一類廣泛應(yīng)用于計算機視覺、自然語言處理等領(lǐng)域的人工神經(jīng)網(wǎng)絡(luò)。它具有良好的空間特征學習能力,能夠處理具有二維或三維形狀的輸入數(shù)據(jù)
2023-08-21 17:15:22938

cnn卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)模型

cnn卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種特殊的神經(jīng)網(wǎng)絡(luò),具有很強的圖像識別和數(shù)據(jù)分類能力。它通過學習權(quán)重和過濾器,自動提取圖像和其他類型數(shù)據(jù)的特征。在過去的幾年
2023-08-21 17:15:57946

cnn卷積神經(jīng)網(wǎng)絡(luò)簡介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼

cnn卷積神經(jīng)網(wǎng)絡(luò)簡介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是目前深度學習領(lǐng)域中應(yīng)用廣泛的一種神經(jīng)網(wǎng)絡(luò)模型。CNN的出現(xiàn)
2023-08-21 17:16:131622

已全部加載完成