電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀(guān)看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>斯坦福探索深度神經(jīng)網(wǎng)絡(luò)可解釋性 決策樹(shù)是關(guān)鍵 - 全文

斯坦福探索深度神經(jīng)網(wǎng)絡(luò)可解釋性 決策樹(shù)是關(guān)鍵 - 全文

上一頁(yè)123456全文
收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀(guān)點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

機(jī)器學(xué)習(xí)模型可解釋性的結(jié)果分析

模型的可解釋性是機(jī)器學(xué)習(xí)領(lǐng)域的一個(gè)重要分支,隨著 AI 應(yīng)用范圍的不斷擴(kuò)大,人們?cè)絹?lái)越不滿(mǎn)足于模型的黑盒特性,與此同時(shí),金融、自動(dòng)駕駛等領(lǐng)域的法律法規(guī)也對(duì)模型的可解釋性提出了更高的要求,在可解釋
2023-09-28 10:17:15437

基于光學(xué)芯片的神經(jīng)網(wǎng)絡(luò)訓(xùn)練

美國(guó)斯坦福大學(xué)的研究人員已經(jīng)證明,可以直接在光學(xué)芯片上訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)。這一重大突破表明,光學(xué)電路可以實(shí)現(xiàn)基于電子的人工神經(jīng)網(wǎng)絡(luò)關(guān)鍵功能,進(jìn)而可以以更便宜、更快速和更節(jié)能的方式執(zhí)行語(yǔ)音識(shí)別、圖像識(shí)別等復(fù)雜任務(wù)。
2018-07-30 08:48:496741

什么是“可解釋的”? 可解釋性AI不能解釋什么

通過(guò)建立既可解釋又準(zhǔn)確的模型來(lái)改良這種錯(cuò)誤的二分法。關(guān)鍵是將神經(jīng)網(wǎng)絡(luò)決策樹(shù)相結(jié)合,在使用神經(jīng)網(wǎng)絡(luò)進(jìn)行低級(jí)決策時(shí)保留高級(jí)的可解釋性。
2020-05-31 10:51:447986

詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

在如今的網(wǎng)絡(luò)時(shí)代,錯(cuò)綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線(xiàn),通過(guò)深度學(xué)習(xí)解決若干問(wèn)題的案例越來(lái)越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32596

決策樹(shù)在機(jī)器學(xué)習(xí)的理論學(xué)習(xí)與實(shí)踐

決策樹(shù)在機(jī)器學(xué)習(xí)的理論學(xué)習(xí)與實(shí)踐
2019-09-20 12:48:44

決策樹(shù)的生成資料

在本文中,我們將討論一種監(jiān)督式學(xué)習(xí)算法。最新一代意法半導(dǎo)體 MEMS 傳感器內(nèi)置一個(gè)基于決策樹(shù)分類(lèi)器的機(jī)器學(xué)習(xí)核心(MLC)。這些產(chǎn)品很容易通過(guò)后綴中的 X 來(lái)識(shí)別(例如,LSM6DSOX)。這種
2023-09-08 06:50:22

斯坦福 CG635 供應(yīng) CG635 時(shí)鐘發(fā)生器

斯坦福 CG635 供應(yīng) CG635 時(shí)鐘發(fā)生器 歐陽(yáng)R:*** QQ:1226365851回收工廠(chǎng)或個(gè)人、庫(kù)存閑置、二手儀器及附件。長(zhǎng)期 專(zhuān)業(yè)銷(xiāo)售、維修、回收 高頻 二手儀器。溫馨提示:如果您
2019-06-16 12:07:43

斯坦福cs231n編程作業(yè)之k近鄰算法

深度學(xué)習(xí)斯坦福cs231n編程作業(yè)#1 --- k近鄰算法(k-NN)
2020-05-07 12:03:37

斯坦福開(kāi)發(fā)過(guò)熱自動(dòng)斷電電池

導(dǎo)致起火。開(kāi)發(fā)電池的斯坦福教授  在斯坦福開(kāi)發(fā)的新電池中,研究人員采用聚乙烯薄膜材料,薄膜上嵌入了鎳磁粉,它會(huì)形成納米級(jí)的突起。研究人員在突起部分覆蓋石墨烯導(dǎo)電材料,讓電流可以從表面通過(guò)。當(dāng)溫度
2016-01-12 11:57:19

深度神經(jīng)網(wǎng)絡(luò)是什么

多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22

神經(jīng)網(wǎng)絡(luò)和反向傳播算法

03_深度學(xué)習(xí)入門(mén)_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05

神經(jīng)網(wǎng)絡(luò)基本介紹

神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知器模型  2.3 自適應(yīng)線(xiàn)性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介

神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡(luò)解決方案讓自動(dòng)駕駛成為現(xiàn)實(shí)

制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開(kāi)辟了令人興奮的研究途徑。為了實(shí)現(xiàn)從諸如高速公路全程自動(dòng)駕駛儀的短時(shí)輔助模式到專(zhuān)職無(wú)人駕駛旅行的自動(dòng)駕駛,汽車(chē)制造業(yè)一直在尋求讓響應(yīng)速度更快、識(shí)別準(zhǔn)確度更高的方法,而深度
2017-12-21 17:11:34

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

DG645 斯坦福 SRS DG645 延遲發(fā)生器 現(xiàn)金回收

DG645 斯坦福 SRS DG645 延遲發(fā)生器 現(xiàn)金回收 歐陽(yáng)R:*** QQ:1226365851溫馨提示:如果您找不到聯(lián)系方式,請(qǐng)?jiān)跒g覽器上搜索一下,旺貿(mào)通儀器儀回收工廠(chǎng)或個(gè)人、庫(kù)存閑置
2022-01-11 10:08:52

EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?

FPGA加速的關(guān)鍵因素是什么?EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?
2021-09-28 06:37:44

ML之決策樹(shù)與隨機(jī)森林

ML--決策樹(shù)與隨機(jī)森林
2020-07-08 12:31:39

labview BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)

請(qǐng)問(wèn):我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒(méi)有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類(lèi)“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

【PYNQ-Z2申請(qǐng)】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

項(xiàng)目名稱(chēng):基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速試用計(jì)劃:申請(qǐng)理由:本人研究生在讀,想要利用PYNQ深入探索卷積神經(jīng)網(wǎng)絡(luò)的硬件加速,在PYNQ上實(shí)現(xiàn)圖像的快速處理項(xiàng)目計(jì)劃:1、在PC端實(shí)現(xiàn)Lnet網(wǎng)絡(luò)的訓(xùn)練
2018-12-19 11:37:22

【專(zhuān)輯精選】人工智能之神經(jīng)網(wǎng)絡(luò)教程與資料

電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對(duì)各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁(yè)面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門(mén)資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺(jué)不是很難,只不過(guò)一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競(jìng)爭(zhēng)學(xué)習(xí)的一個(gè)代表,競(jìng)爭(zhēng)型學(xué)習(xí)
2019-07-21 04:30:00

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類(lèi)似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線(xiàn)性,非平穩(wěn),復(fù)雜的實(shí)際問(wèn)題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人工智能算法有哪些?

決策樹(shù)決策樹(shù)是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過(guò)構(gòu)成決策樹(shù)來(lái)求取凈現(xiàn)值的期望值大于等于零的概率,評(píng)價(jià)項(xiàng)目風(fēng)險(xiǎn),判斷其可行決策分析方法,是直觀(guān)運(yùn)用概率分析的一種圖解法。由于這種決策分支畫(huà)成圖形
2022-03-05 14:15:07

人臉識(shí)別、語(yǔ)音翻譯、無(wú)人駕駛...這些高科技都離不開(kāi)深度神經(jīng)網(wǎng)絡(luò)了!

翻譯軟件都用了深度學(xué)習(xí)技術(shù),利用神經(jīng)網(wǎng)絡(luò)改進(jìn)關(guān)鍵模塊,通用大大地增強(qiáng),南北差異再也不是問(wèn)題了! ◆◆◆ 可以看出,深度學(xué)習(xí)不僅作用于圖像,還可以延伸到更廣的領(lǐng)域。 隨著學(xué)界對(duì)深度學(xué)習(xí)研究越來(lái)越
2018-05-11 11:43:14

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

介紹支持向量機(jī)與決策樹(shù)集成等模型的應(yīng)用

本文主要介紹支持向量機(jī)、k近鄰、樸素貝葉斯分類(lèi) 、決策樹(shù)決策樹(shù)集成等模型的應(yīng)用。講解了支持向量機(jī)SVM線(xiàn)性與非線(xiàn)性模型的適用環(huán)境,并對(duì)核函數(shù)技巧作出深入的分析,對(duì)線(xiàn)性L(fǎng)inear核函數(shù)、多項(xiàng)式
2021-09-01 06:57:36

從AlexNet到MobileNet,帶你入門(mén)深度神經(jīng)網(wǎng)絡(luò)

深度神經(jīng)網(wǎng)絡(luò)運(yùn)用的方法。AlexNet在研發(fā)的時(shí)候,使用的GTX580僅有3GB的顯存,所以創(chuàng)造的把模型拆解在兩張顯卡中,架構(gòu)如下:1.第一層是卷積層,針對(duì)224x224x3的輸入圖片進(jìn)行卷積操作
2018-05-08 15:57:47

供應(yīng) 現(xiàn)貨 CG635 斯坦福 時(shí)鐘發(fā)生器

供應(yīng) 現(xiàn)貨 CG635 斯坦福 時(shí)鐘發(fā)生器 歐陽(yáng)R:*** QQ:1226365851溫馨提示:如果您找不到聯(lián)系方式,請(qǐng)?jiān)跒g覽器上搜索一下,旺貿(mào)通儀器儀回收工廠(chǎng)或個(gè)人、庫(kù)存閑置、二手儀器及附件。長(zhǎng)期
2020-08-18 09:08:58

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

關(guān)于決策樹(shù),這些知識(shí)點(diǎn)不可錯(cuò)過(guò)

可以實(shí)現(xiàn)對(duì)未知的數(shù)據(jù)進(jìn)行高效分類(lèi)。從開(kāi)頭狼人殺的例子中也可以看出,決策樹(shù)模型具有較好的可讀和描述,能夠幫助我們更高效率地去分析問(wèn)題。舉個(gè)例子,普通人去銀行貸款的時(shí)候,銀行會(huì)根據(jù)相應(yīng)條件,來(lái)判斷貸款人
2018-05-23 09:38:48

關(guān)于斯坦福的CNTFET的問(wèn)題

之前下載了斯坦福2015年的CNTFET VS model,是.va的文件,不知道怎么用啊,該怎么通過(guò)cadence的pspice進(jìn)行仿真啊,求指點(diǎn)
2018-01-26 13:47:28

分類(lèi)與回歸方法之決策樹(shù)

統(tǒng)計(jì)學(xué)習(xí)方法決策樹(shù)
2019-11-05 13:40:43

卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究及學(xué)習(xí)總結(jié)

深度學(xué)習(xí)工程師-吳恩達(dá)》03卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究 學(xué)習(xí)總結(jié)
2020-05-22 17:15:57

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問(wèn)題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢(shì),作為一個(gè)
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介:什么是機(jī)器學(xué)習(xí)?

抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來(lái)越多地支持以前無(wú)法實(shí)現(xiàn)或非常難以實(shí)現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò) (CNN) 及其在 AI 系統(tǒng)中機(jī)器學(xué)習(xí)中的重要。CNN 是從
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識(shí)別

我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制器的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。關(guān)鍵詞識(shí)別
2021-07-26 09:46:37

哪位大神能找到斯坦福 EE214B/314A 授課視頻資源?

求助,哪位大神能找到斯坦福EE214B/314A授課視頻資源?
2021-06-22 07:41:41

回收新舊 斯坦福SRS DG645 延遲發(fā)生器

回收新舊 斯坦福SRS DG645 延遲發(fā)生器 歐陽(yáng)R:*** QQ:1226365851溫馨提示:如果您找不到聯(lián)系方式,請(qǐng)?jiān)跒g覽器上搜索一下,旺貿(mào)通儀器儀回收工廠(chǎng)或個(gè)人、庫(kù)存閑置、二手儀器及附件
2021-07-14 10:34:14

基于決策樹(shù)的CART算法識(shí)別印第安人糖尿病患者

利用決策樹(shù)中CART算法識(shí)別印第安人糖尿病患者
2019-05-06 12:16:27

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)

【新技術(shù)發(fā)布】基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署激光雷達(dá)可以準(zhǔn)確地完成三維空間的測(cè)量,具有抗干擾能力強(qiáng)、信息豐富等優(yōu)點(diǎn),但受限于數(shù)據(jù)量大、不規(guī)則等難點(diǎn),基于深度神經(jīng)網(wǎng)絡(luò)
2021-12-21 07:59:18

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署
2021-01-04 06:26:23

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線(xiàn)性表達(dá)能力,可以通過(guò)對(duì)系統(tǒng)性能的學(xué)習(xí)來(lái)實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問(wèn)題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類(lèi)深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類(lèi)似的其他問(wèn)題方面已大獲成功。在當(dāng)前案例中,針對(duì)在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行
2019-06-19 07:24:41

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?

如何用stm32cube.ai簡(jiǎn)化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

稱(chēng)為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢(shì)在于:巨量并行;信息處理和存儲(chǔ)單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號(hào)處理器DSP
2019-08-08 06:11:30

怎樣使用UNICO生成具有多個(gè)決策樹(shù)的UCF文件呢

使用 UNICO(v9.10.0.0),生成具有多個(gè)決策樹(shù)的 UCF 文件的過(guò)程似乎是:1.加載所有決策樹(shù)的所有測(cè)試數(shù)據(jù),像對(duì)單個(gè)樹(shù)一樣標(biāo)記每個(gè)數(shù)據(jù)集(大概標(biāo)簽需要在所有樹(shù)中是唯一的)2.使用MLC
2022-12-26 06:30:11

機(jī)器學(xué)習(xí)的決策樹(shù)介紹

機(jī)器學(xué)習(xí)——決策樹(shù)算法分析
2020-04-02 11:48:38

李航統(tǒng)計(jì)學(xué)習(xí)第五章之決策樹(shù)

李航統(tǒng)計(jì)學(xué)習(xí)第五章-決策樹(shù)
2020-04-29 15:12:25

求助基于labview的神經(jīng)網(wǎng)絡(luò)pid控制

小女子做基于labview的蒸發(fā)過(guò)程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問(wèn)這個(gè)控制方法可以嗎?有誰(shuí)會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16

熱賣(mài)現(xiàn)貨 CG635 斯坦福 時(shí)鐘發(fā)生器

熱賣(mài)現(xiàn)貨 CG635 斯坦福 時(shí)鐘發(fā)生器 歐陽(yáng)R:*** QQ:1226365851溫馨提示:如果您找不到聯(lián)系方式,請(qǐng)?jiān)跒g覽器上搜索一下,旺貿(mào)通儀器儀回收工廠(chǎng)或個(gè)人、庫(kù)存閑置、二手儀器及附件。長(zhǎng)期
2020-12-03 08:39:05

離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)是什么

2018年全球第三大風(fēng)力發(fā)電機(jī)制造商論文下載地址:https://arxiv.org/pdf/1902.05625v1.pdf論文代碼地址:https://github.com/BinhangYuan/WaveletFCNN需要簡(jiǎn)單儲(chǔ)備的知識(shí)離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)回顧離散小波變
2021-07-12 07:38:36

粒子群優(yōu)化模糊神經(jīng)網(wǎng)絡(luò)在語(yǔ)音識(shí)別中的應(yīng)用

的收斂速度和識(shí)別率【關(guān)鍵詞】:粒子群優(yōu)化;;模糊神經(jīng)網(wǎng)絡(luò);;語(yǔ)音識(shí)別【DOI】:CNKI:SUN:SSJS.0.2010-06-018【正文快照】:1引言語(yǔ)音識(shí)別是新一代智能計(jì)算機(jī)的重要組成部分,對(duì)它
2010-05-06 09:05:35

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺(jué)實(shí)踐

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺(jué)實(shí)踐
2020-06-14 22:21:12

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類(lèi)、物體檢測(cè)等機(jī)器
2021-12-14 07:35:25

銷(xiāo)售現(xiàn)貨 斯坦福 SR650 橢圓過(guò)濾器

SR650橢圓過(guò)濾器 產(chǎn)品信息SRS斯坦福SR650 橢圓過(guò)濾器高通SRS斯坦福SR650 橢圓過(guò)濾器高通SR600系列的特性是它的可編程。GPIB和RS-232接口都是標(biāo)準(zhǔn)的,所有的工具設(shè)置都可以通過(guò)
2021-12-31 17:53:59

非局部神經(jīng)網(wǎng)絡(luò),打造未來(lái)神經(jīng)網(wǎng)絡(luò)基本組件

`將非局部計(jì)算作為獲取長(zhǎng)時(shí)記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長(zhǎng)時(shí)記憶(long-range dependency)至關(guān)重要。對(duì)于序列數(shù)據(jù)(例如語(yǔ)音、語(yǔ)言),遞歸運(yùn)算
2018-11-12 14:52:50

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義
2017-07-20 08:58:240

用淺顯的語(yǔ)言帶領(lǐng)大家了解可解釋性的概念與方法

廣義上的可解釋性指在我們需要了解或解決一件事情的時(shí)候,我們可以獲得我們所需要的足夠的可以理解的信息。
2018-06-25 10:21:115608

構(gòu)建一個(gè)決策樹(shù)并查看它如何進(jìn)行預(yù)測(cè)

正如你所看到的,決策樹(shù)非常直觀(guān),他們的決策很容易解釋。 這種模型通常被稱(chēng)為白盒模型。 相反,正如我們將看到的,隨機(jī)森林或神經(jīng)網(wǎng)絡(luò)通常被認(rèn)為是黑匣子模型。 他們做出了很好的預(yù)測(cè),并且我們可以輕松檢查他們執(zhí)行的計(jì)算以進(jìn)行這些預(yù)測(cè); 然而,通常很難用簡(jiǎn)單的術(shù)語(yǔ)來(lái)解釋為什么會(huì)做出預(yù)測(cè)。
2018-07-16 17:12:0113941

機(jī)器學(xué)習(xí)模型的“可解釋性”的概念及其重要意義

如果考察某些類(lèi)型的“事后可解釋性”(post-hoc interpretable),深度神經(jīng)網(wǎng)絡(luò)具有明顯的優(yōu)勢(shì)。深度神經(jīng)網(wǎng)絡(luò)能夠?qū)W習(xí)豐富的表示,這些表示能夠可視化、用語(yǔ)言表達(dá)或用于聚類(lèi)。如果考慮對(duì)可解釋性的需求,似乎線(xiàn)性模型在研究自然世界上的表現(xiàn)更好,但這似乎沒(méi)有理論上的原因。
2018-07-24 09:58:2019321

結(jié)合深度神經(jīng)網(wǎng)絡(luò)決策樹(shù)的完美方案

“ANT的出發(fā)點(diǎn)與mGBDT類(lèi)似,都是期望將神經(jīng)網(wǎng)絡(luò)的表示學(xué)習(xí)和決策樹(shù)的特點(diǎn)做一個(gè)結(jié)合,不過(guò),ANT依舊依賴(lài)神經(jīng)網(wǎng)絡(luò)BP算法進(jìn)行的實(shí)現(xiàn),”馮霽說(shuō):“而深度森林(gcForest/mGBDT)的目的
2018-07-25 09:39:019057

斯坦福證明光學(xué)芯片上訓(xùn)練人工神經(jīng)網(wǎng)絡(luò),之后可以快捷的完成復(fù)雜任務(wù)

據(jù)報(bào)道,美國(guó)斯坦福大學(xué)的研究人員已經(jīng)證明,可以直接在光學(xué)芯片上訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)。這一重大突破表明,光學(xué)電路可以實(shí)現(xiàn)基于電子的人工神經(jīng)網(wǎng)絡(luò)關(guān)鍵功能,進(jìn)而可以以更便宜、更快速和更節(jié)能的方式執(zhí)行語(yǔ)音識(shí)別、圖像識(shí)別等復(fù)雜任務(wù)。
2018-07-30 17:01:003178

深度神經(jīng)決策樹(shù)深度神經(jīng)網(wǎng)絡(luò)和樹(shù)模型結(jié)合的新模型

近日,來(lái)自愛(ài)丁堡大學(xué)的研究人員提出了一種結(jié)合深度神經(jīng)網(wǎng)絡(luò)和樹(shù)模型的新型模型——深度神經(jīng)決策樹(shù)(Deep Neural Decision Trees, DNDT)。
2018-08-19 09:14:4411858

【人工神經(jīng)網(wǎng)絡(luò)基礎(chǔ)】為什么神經(jīng)網(wǎng)絡(luò)選擇了“深度”?

由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會(huì)覺(jué)得兩者沒(méi)有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01557

神經(jīng)網(wǎng)絡(luò)到底有多厲害?斯坦福33頁(yè)P(yáng)PT帶你看明白!

新智元今天為大家推薦一份PPT綜述,作者是斯坦福大學(xué)的多位博士后和博士生。這篇綜述由基于神經(jīng)網(wǎng)絡(luò)和圖網(wǎng)絡(luò)的任務(wù)入手,對(duì)圖神經(jīng)網(wǎng)絡(luò)的建立、架構(gòu)、訓(xùn)練模式和模型特征等方面做了系統(tǒng)的梳理和介紹,并在最后給出了幾個(gè)產(chǎn)業(yè)界和學(xué)術(shù)界的應(yīng)用實(shí)例。
2019-02-18 09:04:106427

如何基于深度神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)一個(gè)端到端的自動(dòng)駕駛模型?

如何基于深度神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)一個(gè)端到端的自動(dòng)駕駛模型?如何設(shè)計(jì)一個(gè)基于增強(qiáng)學(xué)習(xí)的自動(dòng)駕駛決策系統(tǒng)?
2019-04-29 16:44:054404

神經(jīng)網(wǎng)絡(luò)可解釋性研究的重要性日益凸顯

神經(jīng)網(wǎng)絡(luò)可解釋性,從經(jīng)驗(yàn)主義到數(shù)學(xué)建模
2019-06-27 10:54:204942

深度理解神經(jīng)網(wǎng)絡(luò)黑盒子:可驗(yàn)證性和可解釋性

雖然神經(jīng)網(wǎng)絡(luò)在近年來(lái) AI 領(lǐng)域取得的成就中發(fā)揮了關(guān)鍵作用,但它們依舊只是有限可解釋性的黑盒函數(shù)近似器。
2019-08-15 09:17:3412652

Explainable AI旨在提高機(jī)器學(xué)習(xí)模型的可解釋性

Google Cloud AI戰(zhàn)略總監(jiān)Tracy Frey在 今天的博客中解釋說(shuō),Explainable AI旨在提高機(jī)器學(xué)習(xí)模型的可解釋性。她說(shuō),這項(xiàng)新服務(wù)的工作原理是量化每個(gè)數(shù)據(jù)因素對(duì)模型產(chǎn)生的結(jié)果的貢獻(xiàn),幫助用戶(hù)了解其做出決定的原因。
2020-03-24 15:14:212655

深度神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)機(jī)理與決策邏輯難以理解

人工智能系統(tǒng)所面臨的兩大安全問(wèn)題的根源在于深度神經(jīng)網(wǎng)絡(luò)的不可解釋性深度神經(jīng)網(wǎng)絡(luò)可解釋性定義為可判讀(interpretability)和可理解(explainability)兩方面的內(nèi)容。可判讀性,即深度神經(jīng)網(wǎng)絡(luò)輸出可判讀
2020-03-27 15:56:182632

詳談機(jī)器學(xué)習(xí)的決策樹(shù)模型

決策樹(shù)模型是白盒模型的一種,其預(yù)測(cè)結(jié)果可以由人來(lái)解釋。我們把機(jī)器學(xué)習(xí)模型的這一特性稱(chēng)為可解釋性,但并不是所有的機(jī)器學(xué)習(xí)模型都具有可解釋性
2020-07-06 09:49:063073

機(jī)器學(xué)習(xí)模型可解釋性的介紹

模型可解釋性方面的研究,在近兩年的科研會(huì)議上成為關(guān)注熱點(diǎn),因?yàn)榇蠹也粌H僅滿(mǎn)足于模型的效果,更對(duì)模型效果的原因產(chǎn)生更多的思考,這...
2020-12-10 20:19:43533

綜述深度神經(jīng)網(wǎng)絡(luò)解釋方法及發(fā)展趨勢(shì)

、醫(yī)藥、交通等髙風(fēng)險(xiǎn)決策領(lǐng)域?qū)?b class="flag-6" style="color: red">深度神經(jīng)網(wǎng)絡(luò)可解釋性提岀的強(qiáng)烈要求,對(duì)卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絳生成對(duì)抗網(wǎng)絡(luò)等典型網(wǎng)絡(luò)解釋方法進(jìn)行分析梳理,總結(jié)并比較現(xiàn)有的解釋方法,同時(shí)結(jié)合目前深度神經(jīng)網(wǎng)絡(luò)的發(fā)展趨勢(shì),對(duì)其
2021-03-21 09:48:2318

GNN解釋技術(shù)的總結(jié)和分析與圖神經(jīng)網(wǎng)絡(luò)解釋性綜述

神經(jīng)網(wǎng)絡(luò)可解釋性是目前比較值得探索的方向,今天解讀的2021最新綜述,其針對(duì)近期提出的 GNN 解釋技術(shù)進(jìn)行了系統(tǒng)的總結(jié)和分析,歸納對(duì)比了該問(wèn)題的解決思路。
2021-03-27 11:45:325583

神經(jīng)網(wǎng)絡(luò)解釋性綜述

神經(jīng)網(wǎng)絡(luò)可解釋性是目前比較值得探索的方向,今天解讀的2021最新綜述,其針對(duì)近期提出的 GNN 解釋技術(shù)進(jìn)行了系統(tǒng)的總結(jié)和分析,歸納對(duì)比了該問(wèn)題的解決思路。作者還為GNN解釋性問(wèn)題提供了標(biāo)準(zhǔn)
2021-04-09 11:42:062440

《計(jì)算機(jī)研究與發(fā)展》—機(jī)器學(xué)習(xí)的可解釋性

機(jī)器學(xué)習(xí)的可解釋性 來(lái)源:《計(jì)算機(jī)研究與發(fā)展》,作者陳珂銳等 摘 要?近年來(lái),機(jī)器學(xué)習(xí)發(fā)展迅速,尤其是深度學(xué)習(xí)在圖像、聲音、自然語(yǔ)言處理等領(lǐng)域取得卓越成效.機(jī)器學(xué)習(xí)算法的表示能力大幅度提高,但是
2022-01-25 08:35:36790

關(guān)于機(jī)器學(xué)習(xí)模型的六大可解釋性技術(shù)

本文介紹目前常見(jiàn)的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù)。
2022-02-26 17:20:191831

機(jī)器學(xué)習(xí)模型的可解釋性算法詳解

本文介紹目前常見(jiàn)的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù),包括它們的相對(duì)優(yōu)點(diǎn)和缺點(diǎn)。
2022-02-16 16:21:313986

深度神經(jīng)網(wǎng)絡(luò)的基本理論和架構(gòu)

隨著數(shù)學(xué)優(yōu)化和計(jì)算硬件的迅猛發(fā)展,深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNN)(名詞解釋>)已然成為解決各領(lǐng)域中許多挑戰(zhàn)性問(wèn)題的強(qiáng)大工具,包括決策、計(jì)算成像、全息技術(shù)等。
2022-04-11 12:24:502567

可以提高機(jī)器學(xué)習(xí)模型的可解釋性技術(shù)

本文介紹目前常見(jiàn)的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù),包括它們的相對(duì)優(yōu)點(diǎn)和缺點(diǎn)。
2023-02-08 14:08:52861

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)
2023-02-23 09:14:442256

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來(lái)源:青榴實(shí)驗(yàn)室 1、引子 深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類(lèi)或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層
2023-05-15 14:20:01550

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來(lái)源:青榴實(shí)驗(yàn)室1、引子深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類(lèi)或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)
2023-05-17 09:59:19946

卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋

卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種眾所周知的深度學(xué)習(xí)算法,是人工智能領(lǐng)域中最受歡迎的技術(shù)之一
2023-08-21 16:49:242216

卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類(lèi)。卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361867

淺析深度神經(jīng)網(wǎng)絡(luò)壓縮與加速技術(shù)

深度神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的一種框架,它是一種具備至少一個(gè)隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類(lèi)似
2023-10-11 09:14:33363

已全部加載完成